Step |
Hyp |
Ref |
Expression |
1 |
|
dalema.ph |
⊢ ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( 𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂 ) ∧ ( ( ¬ 𝐶 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝐶 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝐶 ≤ ( 𝑅 ∨ 𝑃 ) ) ∧ ( ¬ 𝐶 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝐶 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝐶 ≤ ( 𝑈 ∨ 𝑆 ) ) ∧ ( 𝐶 ≤ ( 𝑃 ∨ 𝑆 ) ∧ 𝐶 ≤ ( 𝑄 ∨ 𝑇 ) ∧ 𝐶 ≤ ( 𝑅 ∨ 𝑈 ) ) ) ) ) |
2 |
|
dalemc.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
dalemc.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
dalemc.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
dalem12.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
6 |
|
dalem12.o |
⊢ 𝑂 = ( LPlanes ‘ 𝐾 ) |
7 |
|
dalem12.y |
⊢ 𝑌 = ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) |
8 |
|
dalem12.z |
⊢ 𝑍 = ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) |
9 |
|
dalem12.x |
⊢ 𝑋 = ( 𝑌 ∧ 𝑍 ) |
10 |
|
dalem12.f |
⊢ 𝐹 = ( ( 𝑅 ∨ 𝑃 ) ∧ ( 𝑈 ∨ 𝑆 ) ) |
11 |
1 2 3 4 7 8
|
dalemrot |
⊢ ( 𝜑 → ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ) ∧ ( ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑃 ) ∈ 𝑂 ∧ ( ( 𝑇 ∨ 𝑈 ) ∨ 𝑆 ) ∈ 𝑂 ) ∧ ( ( ¬ 𝐶 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝐶 ≤ ( 𝑅 ∨ 𝑃 ) ∧ ¬ 𝐶 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝐶 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝐶 ≤ ( 𝑈 ∨ 𝑆 ) ∧ ¬ 𝐶 ≤ ( 𝑆 ∨ 𝑇 ) ) ∧ ( 𝐶 ≤ ( 𝑄 ∨ 𝑇 ) ∧ 𝐶 ≤ ( 𝑅 ∨ 𝑈 ) ∧ 𝐶 ≤ ( 𝑃 ∨ 𝑆 ) ) ) ) ) |
12 |
|
biid |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ) ∧ ( ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑃 ) ∈ 𝑂 ∧ ( ( 𝑇 ∨ 𝑈 ) ∨ 𝑆 ) ∈ 𝑂 ) ∧ ( ( ¬ 𝐶 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝐶 ≤ ( 𝑅 ∨ 𝑃 ) ∧ ¬ 𝐶 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝐶 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝐶 ≤ ( 𝑈 ∨ 𝑆 ) ∧ ¬ 𝐶 ≤ ( 𝑆 ∨ 𝑇 ) ) ∧ ( 𝐶 ≤ ( 𝑄 ∨ 𝑇 ) ∧ 𝐶 ≤ ( 𝑅 ∨ 𝑈 ) ∧ 𝐶 ≤ ( 𝑃 ∨ 𝑆 ) ) ) ) ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ) ∧ ( ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑃 ) ∈ 𝑂 ∧ ( ( 𝑇 ∨ 𝑈 ) ∨ 𝑆 ) ∈ 𝑂 ) ∧ ( ( ¬ 𝐶 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝐶 ≤ ( 𝑅 ∨ 𝑃 ) ∧ ¬ 𝐶 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝐶 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝐶 ≤ ( 𝑈 ∨ 𝑆 ) ∧ ¬ 𝐶 ≤ ( 𝑆 ∨ 𝑇 ) ) ∧ ( 𝐶 ≤ ( 𝑄 ∨ 𝑇 ) ∧ 𝐶 ≤ ( 𝑅 ∨ 𝑈 ) ∧ 𝐶 ≤ ( 𝑃 ∨ 𝑆 ) ) ) ) ) |
13 |
|
eqid |
⊢ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑃 ) = ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑃 ) |
14 |
|
eqid |
⊢ ( ( 𝑇 ∨ 𝑈 ) ∨ 𝑆 ) = ( ( 𝑇 ∨ 𝑈 ) ∨ 𝑆 ) |
15 |
|
eqid |
⊢ ( ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑃 ) ∧ ( ( 𝑇 ∨ 𝑈 ) ∨ 𝑆 ) ) = ( ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑃 ) ∧ ( ( 𝑇 ∨ 𝑈 ) ∨ 𝑆 ) ) |
16 |
12 2 3 4 5 6 13 14 15 10
|
dalem11 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ) ∧ ( ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑃 ) ∈ 𝑂 ∧ ( ( 𝑇 ∨ 𝑈 ) ∨ 𝑆 ) ∈ 𝑂 ) ∧ ( ( ¬ 𝐶 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝐶 ≤ ( 𝑅 ∨ 𝑃 ) ∧ ¬ 𝐶 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝐶 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝐶 ≤ ( 𝑈 ∨ 𝑆 ) ∧ ¬ 𝐶 ≤ ( 𝑆 ∨ 𝑇 ) ) ∧ ( 𝐶 ≤ ( 𝑄 ∨ 𝑇 ) ∧ 𝐶 ≤ ( 𝑅 ∨ 𝑈 ) ∧ 𝐶 ≤ ( 𝑃 ∨ 𝑆 ) ) ) ) → 𝐹 ≤ ( ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑃 ) ∧ ( ( 𝑇 ∨ 𝑈 ) ∨ 𝑆 ) ) ) |
17 |
11 16
|
syl |
⊢ ( 𝜑 → 𝐹 ≤ ( ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑃 ) ∧ ( ( 𝑇 ∨ 𝑈 ) ∨ 𝑆 ) ) ) |
18 |
1 3 4
|
dalemqrprot |
⊢ ( 𝜑 → ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑃 ) = ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) |
19 |
7 18
|
eqtr4id |
⊢ ( 𝜑 → 𝑌 = ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑃 ) ) |
20 |
1
|
dalemkehl |
⊢ ( 𝜑 → 𝐾 ∈ HL ) |
21 |
1
|
dalemtea |
⊢ ( 𝜑 → 𝑇 ∈ 𝐴 ) |
22 |
1
|
dalemuea |
⊢ ( 𝜑 → 𝑈 ∈ 𝐴 ) |
23 |
1
|
dalemsea |
⊢ ( 𝜑 → 𝑆 ∈ 𝐴 ) |
24 |
3 4
|
hlatjrot |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ) → ( ( 𝑇 ∨ 𝑈 ) ∨ 𝑆 ) = ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) |
25 |
20 21 22 23 24
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝑇 ∨ 𝑈 ) ∨ 𝑆 ) = ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) |
26 |
8 25
|
eqtr4id |
⊢ ( 𝜑 → 𝑍 = ( ( 𝑇 ∨ 𝑈 ) ∨ 𝑆 ) ) |
27 |
19 26
|
oveq12d |
⊢ ( 𝜑 → ( 𝑌 ∧ 𝑍 ) = ( ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑃 ) ∧ ( ( 𝑇 ∨ 𝑈 ) ∨ 𝑆 ) ) ) |
28 |
9 27
|
syl5eq |
⊢ ( 𝜑 → 𝑋 = ( ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑃 ) ∧ ( ( 𝑇 ∨ 𝑈 ) ∨ 𝑆 ) ) ) |
29 |
17 28
|
breqtrrd |
⊢ ( 𝜑 → 𝐹 ≤ 𝑋 ) |