Metamath Proof Explorer


Theorem dalem12

Description: Lemma for dath . Analogue of dalem10 for F . (Contributed by NM, 11-Aug-2012)

Ref Expression
Hypotheses dalema.ph ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) ∧ ( 𝑌𝑂𝑍𝑂 ) ∧ ( ( ¬ 𝐶 ( 𝑃 𝑄 ) ∧ ¬ 𝐶 ( 𝑄 𝑅 ) ∧ ¬ 𝐶 ( 𝑅 𝑃 ) ) ∧ ( ¬ 𝐶 ( 𝑆 𝑇 ) ∧ ¬ 𝐶 ( 𝑇 𝑈 ) ∧ ¬ 𝐶 ( 𝑈 𝑆 ) ) ∧ ( 𝐶 ( 𝑃 𝑆 ) ∧ 𝐶 ( 𝑄 𝑇 ) ∧ 𝐶 ( 𝑅 𝑈 ) ) ) ) )
dalemc.l = ( le ‘ 𝐾 )
dalemc.j = ( join ‘ 𝐾 )
dalemc.a 𝐴 = ( Atoms ‘ 𝐾 )
dalem12.m = ( meet ‘ 𝐾 )
dalem12.o 𝑂 = ( LPlanes ‘ 𝐾 )
dalem12.y 𝑌 = ( ( 𝑃 𝑄 ) 𝑅 )
dalem12.z 𝑍 = ( ( 𝑆 𝑇 ) 𝑈 )
dalem12.x 𝑋 = ( 𝑌 𝑍 )
dalem12.f 𝐹 = ( ( 𝑅 𝑃 ) ( 𝑈 𝑆 ) )
Assertion dalem12 ( 𝜑𝐹 𝑋 )

Proof

Step Hyp Ref Expression
1 dalema.ph ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) ∧ ( 𝑌𝑂𝑍𝑂 ) ∧ ( ( ¬ 𝐶 ( 𝑃 𝑄 ) ∧ ¬ 𝐶 ( 𝑄 𝑅 ) ∧ ¬ 𝐶 ( 𝑅 𝑃 ) ) ∧ ( ¬ 𝐶 ( 𝑆 𝑇 ) ∧ ¬ 𝐶 ( 𝑇 𝑈 ) ∧ ¬ 𝐶 ( 𝑈 𝑆 ) ) ∧ ( 𝐶 ( 𝑃 𝑆 ) ∧ 𝐶 ( 𝑄 𝑇 ) ∧ 𝐶 ( 𝑅 𝑈 ) ) ) ) )
2 dalemc.l = ( le ‘ 𝐾 )
3 dalemc.j = ( join ‘ 𝐾 )
4 dalemc.a 𝐴 = ( Atoms ‘ 𝐾 )
5 dalem12.m = ( meet ‘ 𝐾 )
6 dalem12.o 𝑂 = ( LPlanes ‘ 𝐾 )
7 dalem12.y 𝑌 = ( ( 𝑃 𝑄 ) 𝑅 )
8 dalem12.z 𝑍 = ( ( 𝑆 𝑇 ) 𝑈 )
9 dalem12.x 𝑋 = ( 𝑌 𝑍 )
10 dalem12.f 𝐹 = ( ( 𝑅 𝑃 ) ( 𝑈 𝑆 ) )
11 1 2 3 4 7 8 dalemrot ( 𝜑 → ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑄𝐴𝑅𝐴𝑃𝐴 ) ∧ ( 𝑇𝐴𝑈𝐴𝑆𝐴 ) ) ∧ ( ( ( 𝑄 𝑅 ) 𝑃 ) ∈ 𝑂 ∧ ( ( 𝑇 𝑈 ) 𝑆 ) ∈ 𝑂 ) ∧ ( ( ¬ 𝐶 ( 𝑄 𝑅 ) ∧ ¬ 𝐶 ( 𝑅 𝑃 ) ∧ ¬ 𝐶 ( 𝑃 𝑄 ) ) ∧ ( ¬ 𝐶 ( 𝑇 𝑈 ) ∧ ¬ 𝐶 ( 𝑈 𝑆 ) ∧ ¬ 𝐶 ( 𝑆 𝑇 ) ) ∧ ( 𝐶 ( 𝑄 𝑇 ) ∧ 𝐶 ( 𝑅 𝑈 ) ∧ 𝐶 ( 𝑃 𝑆 ) ) ) ) )
12 biid ( ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑄𝐴𝑅𝐴𝑃𝐴 ) ∧ ( 𝑇𝐴𝑈𝐴𝑆𝐴 ) ) ∧ ( ( ( 𝑄 𝑅 ) 𝑃 ) ∈ 𝑂 ∧ ( ( 𝑇 𝑈 ) 𝑆 ) ∈ 𝑂 ) ∧ ( ( ¬ 𝐶 ( 𝑄 𝑅 ) ∧ ¬ 𝐶 ( 𝑅 𝑃 ) ∧ ¬ 𝐶 ( 𝑃 𝑄 ) ) ∧ ( ¬ 𝐶 ( 𝑇 𝑈 ) ∧ ¬ 𝐶 ( 𝑈 𝑆 ) ∧ ¬ 𝐶 ( 𝑆 𝑇 ) ) ∧ ( 𝐶 ( 𝑄 𝑇 ) ∧ 𝐶 ( 𝑅 𝑈 ) ∧ 𝐶 ( 𝑃 𝑆 ) ) ) ) ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑄𝐴𝑅𝐴𝑃𝐴 ) ∧ ( 𝑇𝐴𝑈𝐴𝑆𝐴 ) ) ∧ ( ( ( 𝑄 𝑅 ) 𝑃 ) ∈ 𝑂 ∧ ( ( 𝑇 𝑈 ) 𝑆 ) ∈ 𝑂 ) ∧ ( ( ¬ 𝐶 ( 𝑄 𝑅 ) ∧ ¬ 𝐶 ( 𝑅 𝑃 ) ∧ ¬ 𝐶 ( 𝑃 𝑄 ) ) ∧ ( ¬ 𝐶 ( 𝑇 𝑈 ) ∧ ¬ 𝐶 ( 𝑈 𝑆 ) ∧ ¬ 𝐶 ( 𝑆 𝑇 ) ) ∧ ( 𝐶 ( 𝑄 𝑇 ) ∧ 𝐶 ( 𝑅 𝑈 ) ∧ 𝐶 ( 𝑃 𝑆 ) ) ) ) )
13 eqid ( ( 𝑄 𝑅 ) 𝑃 ) = ( ( 𝑄 𝑅 ) 𝑃 )
14 eqid ( ( 𝑇 𝑈 ) 𝑆 ) = ( ( 𝑇 𝑈 ) 𝑆 )
15 eqid ( ( ( 𝑄 𝑅 ) 𝑃 ) ( ( 𝑇 𝑈 ) 𝑆 ) ) = ( ( ( 𝑄 𝑅 ) 𝑃 ) ( ( 𝑇 𝑈 ) 𝑆 ) )
16 12 2 3 4 5 6 13 14 15 10 dalem11 ( ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑄𝐴𝑅𝐴𝑃𝐴 ) ∧ ( 𝑇𝐴𝑈𝐴𝑆𝐴 ) ) ∧ ( ( ( 𝑄 𝑅 ) 𝑃 ) ∈ 𝑂 ∧ ( ( 𝑇 𝑈 ) 𝑆 ) ∈ 𝑂 ) ∧ ( ( ¬ 𝐶 ( 𝑄 𝑅 ) ∧ ¬ 𝐶 ( 𝑅 𝑃 ) ∧ ¬ 𝐶 ( 𝑃 𝑄 ) ) ∧ ( ¬ 𝐶 ( 𝑇 𝑈 ) ∧ ¬ 𝐶 ( 𝑈 𝑆 ) ∧ ¬ 𝐶 ( 𝑆 𝑇 ) ) ∧ ( 𝐶 ( 𝑄 𝑇 ) ∧ 𝐶 ( 𝑅 𝑈 ) ∧ 𝐶 ( 𝑃 𝑆 ) ) ) ) → 𝐹 ( ( ( 𝑄 𝑅 ) 𝑃 ) ( ( 𝑇 𝑈 ) 𝑆 ) ) )
17 11 16 syl ( 𝜑𝐹 ( ( ( 𝑄 𝑅 ) 𝑃 ) ( ( 𝑇 𝑈 ) 𝑆 ) ) )
18 1 3 4 dalemqrprot ( 𝜑 → ( ( 𝑄 𝑅 ) 𝑃 ) = ( ( 𝑃 𝑄 ) 𝑅 ) )
19 7 18 eqtr4id ( 𝜑𝑌 = ( ( 𝑄 𝑅 ) 𝑃 ) )
20 1 dalemkehl ( 𝜑𝐾 ∈ HL )
21 1 dalemtea ( 𝜑𝑇𝐴 )
22 1 dalemuea ( 𝜑𝑈𝐴 )
23 1 dalemsea ( 𝜑𝑆𝐴 )
24 3 4 hlatjrot ( ( 𝐾 ∈ HL ∧ ( 𝑇𝐴𝑈𝐴𝑆𝐴 ) ) → ( ( 𝑇 𝑈 ) 𝑆 ) = ( ( 𝑆 𝑇 ) 𝑈 ) )
25 20 21 22 23 24 syl13anc ( 𝜑 → ( ( 𝑇 𝑈 ) 𝑆 ) = ( ( 𝑆 𝑇 ) 𝑈 ) )
26 8 25 eqtr4id ( 𝜑𝑍 = ( ( 𝑇 𝑈 ) 𝑆 ) )
27 19 26 oveq12d ( 𝜑 → ( 𝑌 𝑍 ) = ( ( ( 𝑄 𝑅 ) 𝑃 ) ( ( 𝑇 𝑈 ) 𝑆 ) ) )
28 9 27 syl5eq ( 𝜑𝑋 = ( ( ( 𝑄 𝑅 ) 𝑃 ) ( ( 𝑇 𝑈 ) 𝑆 ) ) )
29 17 28 breqtrrd ( 𝜑𝐹 𝑋 )