| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpvmasum.z |
⊢ 𝑍 = ( ℤ/nℤ ‘ 𝑁 ) |
| 2 |
|
rpvmasum.l |
⊢ 𝐿 = ( ℤRHom ‘ 𝑍 ) |
| 3 |
|
rpvmasum.a |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 4 |
|
rpvmasum.g |
⊢ 𝐺 = ( DChr ‘ 𝑁 ) |
| 5 |
|
rpvmasum.d |
⊢ 𝐷 = ( Base ‘ 𝐺 ) |
| 6 |
|
rpvmasum.1 |
⊢ 1 = ( 0g ‘ 𝐺 ) |
| 7 |
|
dchrisum.b |
⊢ ( 𝜑 → 𝑋 ∈ 𝐷 ) |
| 8 |
|
dchrisum.n1 |
⊢ ( 𝜑 → 𝑋 ≠ 1 ) |
| 9 |
|
dchrvmasum.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) |
| 10 |
|
dchrvmasum2.2 |
⊢ ( 𝜑 → 1 ≤ 𝐴 ) |
| 11 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∈ Fin ) |
| 12 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑋 ∈ 𝐷 ) |
| 13 |
|
elfzelz |
⊢ ( 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) → 𝑑 ∈ ℤ ) |
| 14 |
13
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑑 ∈ ℤ ) |
| 15 |
4 1 5 2 12 14
|
dchrzrhcl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) ∈ ℂ ) |
| 16 |
|
elfznn |
⊢ ( 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) → 𝑑 ∈ ℕ ) |
| 17 |
16
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑑 ∈ ℕ ) |
| 18 |
|
mucl |
⊢ ( 𝑑 ∈ ℕ → ( μ ‘ 𝑑 ) ∈ ℤ ) |
| 19 |
18
|
zred |
⊢ ( 𝑑 ∈ ℕ → ( μ ‘ 𝑑 ) ∈ ℝ ) |
| 20 |
|
nndivre |
⊢ ( ( ( μ ‘ 𝑑 ) ∈ ℝ ∧ 𝑑 ∈ ℕ ) → ( ( μ ‘ 𝑑 ) / 𝑑 ) ∈ ℝ ) |
| 21 |
19 20
|
mpancom |
⊢ ( 𝑑 ∈ ℕ → ( ( μ ‘ 𝑑 ) / 𝑑 ) ∈ ℝ ) |
| 22 |
17 21
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( μ ‘ 𝑑 ) / 𝑑 ) ∈ ℝ ) |
| 23 |
22
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( μ ‘ 𝑑 ) / 𝑑 ) ∈ ℂ ) |
| 24 |
15 23
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) ∈ ℂ ) |
| 25 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ∈ Fin ) |
| 26 |
12
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → 𝑋 ∈ 𝐷 ) |
| 27 |
|
elfzelz |
⊢ ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) → 𝑚 ∈ ℤ ) |
| 28 |
27
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → 𝑚 ∈ ℤ ) |
| 29 |
4 1 5 2 26 28
|
dchrzrhcl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) ∈ ℂ ) |
| 30 |
|
elfznn |
⊢ ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) → 𝑚 ∈ ℕ ) |
| 31 |
30
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → 𝑚 ∈ ℕ ) |
| 32 |
31
|
nnrpd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → 𝑚 ∈ ℝ+ ) |
| 33 |
32
|
relogcld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( log ‘ 𝑚 ) ∈ ℝ ) |
| 34 |
33 31
|
nndivred |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( ( log ‘ 𝑚 ) / 𝑚 ) ∈ ℝ ) |
| 35 |
34
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( ( log ‘ 𝑚 ) / 𝑚 ) ∈ ℂ ) |
| 36 |
29 35
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ 𝑚 ) / 𝑚 ) ) ∈ ℂ ) |
| 37 |
25 36
|
fsumcl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ 𝑚 ) / 𝑚 ) ) ∈ ℂ ) |
| 38 |
24 37
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ 𝑚 ) / 𝑚 ) ) ) ∈ ℂ ) |
| 39 |
16
|
nnrpd |
⊢ ( 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) → 𝑑 ∈ ℝ+ ) |
| 40 |
|
rpdivcl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) → ( 𝐴 / 𝑑 ) ∈ ℝ+ ) |
| 41 |
9 39 40
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 𝐴 / 𝑑 ) ∈ ℝ+ ) |
| 42 |
41
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( 𝐴 / 𝑑 ) ∈ ℝ+ ) |
| 43 |
42 32
|
rpdivcld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( ( 𝐴 / 𝑑 ) / 𝑚 ) ∈ ℝ+ ) |
| 44 |
43
|
relogcld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( log ‘ ( ( 𝐴 / 𝑑 ) / 𝑚 ) ) ∈ ℝ ) |
| 45 |
44 31
|
nndivred |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( ( log ‘ ( ( 𝐴 / 𝑑 ) / 𝑚 ) ) / 𝑚 ) ∈ ℝ ) |
| 46 |
45
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( ( log ‘ ( ( 𝐴 / 𝑑 ) / 𝑚 ) ) / 𝑚 ) ∈ ℂ ) |
| 47 |
29 46
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ ( ( 𝐴 / 𝑑 ) / 𝑚 ) ) / 𝑚 ) ) ∈ ℂ ) |
| 48 |
25 47
|
fsumcl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ ( ( 𝐴 / 𝑑 ) / 𝑚 ) ) / 𝑚 ) ) ∈ ℂ ) |
| 49 |
24 48
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ ( ( 𝐴 / 𝑑 ) / 𝑚 ) ) / 𝑚 ) ) ) ∈ ℂ ) |
| 50 |
11 38 49
|
fsumadd |
⊢ ( 𝜑 → Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ 𝑚 ) / 𝑚 ) ) ) + ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ ( ( 𝐴 / 𝑑 ) / 𝑚 ) ) / 𝑚 ) ) ) ) = ( Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ 𝑚 ) / 𝑚 ) ) ) + Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ ( ( 𝐴 / 𝑑 ) / 𝑚 ) ) / 𝑚 ) ) ) ) ) |
| 51 |
42 32
|
relogdivd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( log ‘ ( ( 𝐴 / 𝑑 ) / 𝑚 ) ) = ( ( log ‘ ( 𝐴 / 𝑑 ) ) − ( log ‘ 𝑚 ) ) ) |
| 52 |
51
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( ( log ‘ 𝑚 ) + ( log ‘ ( ( 𝐴 / 𝑑 ) / 𝑚 ) ) ) = ( ( log ‘ 𝑚 ) + ( ( log ‘ ( 𝐴 / 𝑑 ) ) − ( log ‘ 𝑚 ) ) ) ) |
| 53 |
33
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( log ‘ 𝑚 ) ∈ ℂ ) |
| 54 |
41
|
relogcld |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( log ‘ ( 𝐴 / 𝑑 ) ) ∈ ℝ ) |
| 55 |
54
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( log ‘ ( 𝐴 / 𝑑 ) ) ∈ ℂ ) |
| 56 |
55
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( log ‘ ( 𝐴 / 𝑑 ) ) ∈ ℂ ) |
| 57 |
53 56
|
pncan3d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( ( log ‘ 𝑚 ) + ( ( log ‘ ( 𝐴 / 𝑑 ) ) − ( log ‘ 𝑚 ) ) ) = ( log ‘ ( 𝐴 / 𝑑 ) ) ) |
| 58 |
52 57
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( log ‘ ( 𝐴 / 𝑑 ) ) = ( ( log ‘ 𝑚 ) + ( log ‘ ( ( 𝐴 / 𝑑 ) / 𝑚 ) ) ) ) |
| 59 |
58
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( ( log ‘ ( 𝐴 / 𝑑 ) ) / 𝑚 ) = ( ( ( log ‘ 𝑚 ) + ( log ‘ ( ( 𝐴 / 𝑑 ) / 𝑚 ) ) ) / 𝑚 ) ) |
| 60 |
44
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( log ‘ ( ( 𝐴 / 𝑑 ) / 𝑚 ) ) ∈ ℂ ) |
| 61 |
31
|
nncnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → 𝑚 ∈ ℂ ) |
| 62 |
31
|
nnne0d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → 𝑚 ≠ 0 ) |
| 63 |
53 60 61 62
|
divdird |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( ( ( log ‘ 𝑚 ) + ( log ‘ ( ( 𝐴 / 𝑑 ) / 𝑚 ) ) ) / 𝑚 ) = ( ( ( log ‘ 𝑚 ) / 𝑚 ) + ( ( log ‘ ( ( 𝐴 / 𝑑 ) / 𝑚 ) ) / 𝑚 ) ) ) |
| 64 |
59 63
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( ( log ‘ ( 𝐴 / 𝑑 ) ) / 𝑚 ) = ( ( ( log ‘ 𝑚 ) / 𝑚 ) + ( ( log ‘ ( ( 𝐴 / 𝑑 ) / 𝑚 ) ) / 𝑚 ) ) ) |
| 65 |
64
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ ( 𝐴 / 𝑑 ) ) / 𝑚 ) ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( ( log ‘ 𝑚 ) / 𝑚 ) + ( ( log ‘ ( ( 𝐴 / 𝑑 ) / 𝑚 ) ) / 𝑚 ) ) ) ) |
| 66 |
29 35 46
|
adddid |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( ( log ‘ 𝑚 ) / 𝑚 ) + ( ( log ‘ ( ( 𝐴 / 𝑑 ) / 𝑚 ) ) / 𝑚 ) ) ) = ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ 𝑚 ) / 𝑚 ) ) + ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ ( ( 𝐴 / 𝑑 ) / 𝑚 ) ) / 𝑚 ) ) ) ) |
| 67 |
65 66
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ ( 𝐴 / 𝑑 ) ) / 𝑚 ) ) = ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ 𝑚 ) / 𝑚 ) ) + ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ ( ( 𝐴 / 𝑑 ) / 𝑚 ) ) / 𝑚 ) ) ) ) |
| 68 |
67
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ ( 𝐴 / 𝑑 ) ) / 𝑚 ) ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ 𝑚 ) / 𝑚 ) ) + ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ ( ( 𝐴 / 𝑑 ) / 𝑚 ) ) / 𝑚 ) ) ) ) |
| 69 |
25 36 47
|
fsumadd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ 𝑚 ) / 𝑚 ) ) + ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ ( ( 𝐴 / 𝑑 ) / 𝑚 ) ) / 𝑚 ) ) ) = ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ 𝑚 ) / 𝑚 ) ) + Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ ( ( 𝐴 / 𝑑 ) / 𝑚 ) ) / 𝑚 ) ) ) ) |
| 70 |
68 69
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ ( 𝐴 / 𝑑 ) ) / 𝑚 ) ) = ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ 𝑚 ) / 𝑚 ) ) + Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ ( ( 𝐴 / 𝑑 ) / 𝑚 ) ) / 𝑚 ) ) ) ) |
| 71 |
70
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ ( 𝐴 / 𝑑 ) ) / 𝑚 ) ) ) = ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ 𝑚 ) / 𝑚 ) ) + Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ ( ( 𝐴 / 𝑑 ) / 𝑚 ) ) / 𝑚 ) ) ) ) ) |
| 72 |
24 37 48
|
adddid |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ 𝑚 ) / 𝑚 ) ) + Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ ( ( 𝐴 / 𝑑 ) / 𝑚 ) ) / 𝑚 ) ) ) ) = ( ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ 𝑚 ) / 𝑚 ) ) ) + ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ ( ( 𝐴 / 𝑑 ) / 𝑚 ) ) / 𝑚 ) ) ) ) ) |
| 73 |
71 72
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ ( 𝐴 / 𝑑 ) ) / 𝑚 ) ) ) = ( ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ 𝑚 ) / 𝑚 ) ) ) + ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ ( ( 𝐴 / 𝑑 ) / 𝑚 ) ) / 𝑚 ) ) ) ) ) |
| 74 |
73
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ ( 𝐴 / 𝑑 ) ) / 𝑚 ) ) ) = Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ 𝑚 ) / 𝑚 ) ) ) + ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ ( ( 𝐴 / 𝑑 ) / 𝑚 ) ) / 𝑚 ) ) ) ) ) |
| 75 |
1 2 3 4 5 6 7 8 9
|
dchrvmasumlem1 |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) · ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) = Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ 𝑚 ) / 𝑚 ) ) ) ) |
| 76 |
1 2 3 4 5 6 7 8 9 10
|
dchrvmasum2lem |
⊢ ( 𝜑 → ( log ‘ 𝐴 ) = Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ ( ( 𝐴 / 𝑑 ) / 𝑚 ) ) / 𝑚 ) ) ) ) |
| 77 |
75 76
|
oveq12d |
⊢ ( 𝜑 → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) · ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) + ( log ‘ 𝐴 ) ) = ( Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ 𝑚 ) / 𝑚 ) ) ) + Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ ( ( 𝐴 / 𝑑 ) / 𝑚 ) ) / 𝑚 ) ) ) ) ) |
| 78 |
50 74 77
|
3eqtr4rd |
⊢ ( 𝜑 → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) · ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) + ( log ‘ 𝐴 ) ) = Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ ( 𝐴 / 𝑑 ) ) / 𝑚 ) ) ) ) |
| 79 |
78
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) · ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) + ( log ‘ 𝐴 ) ) = Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ ( 𝐴 / 𝑑 ) ) / 𝑚 ) ) ) ) |
| 80 |
|
iftrue |
⊢ ( 𝜓 → if ( 𝜓 , ( log ‘ 𝐴 ) , 0 ) = ( log ‘ 𝐴 ) ) |
| 81 |
80
|
oveq2d |
⊢ ( 𝜓 → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) · ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) + if ( 𝜓 , ( log ‘ 𝐴 ) , 0 ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) · ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) + ( log ‘ 𝐴 ) ) ) |
| 82 |
81
|
adantl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) · ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) + if ( 𝜓 , ( log ‘ 𝐴 ) , 0 ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) · ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) + ( log ‘ 𝐴 ) ) ) |
| 83 |
|
iftrue |
⊢ ( 𝜓 → if ( 𝜓 , ( 𝐴 / 𝑑 ) , 𝑚 ) = ( 𝐴 / 𝑑 ) ) |
| 84 |
83
|
fveq2d |
⊢ ( 𝜓 → ( log ‘ if ( 𝜓 , ( 𝐴 / 𝑑 ) , 𝑚 ) ) = ( log ‘ ( 𝐴 / 𝑑 ) ) ) |
| 85 |
84
|
oveq1d |
⊢ ( 𝜓 → ( ( log ‘ if ( 𝜓 , ( 𝐴 / 𝑑 ) , 𝑚 ) ) / 𝑚 ) = ( ( log ‘ ( 𝐴 / 𝑑 ) ) / 𝑚 ) ) |
| 86 |
85
|
oveq2d |
⊢ ( 𝜓 → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ if ( 𝜓 , ( 𝐴 / 𝑑 ) , 𝑚 ) ) / 𝑚 ) ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ ( 𝐴 / 𝑑 ) ) / 𝑚 ) ) ) |
| 87 |
86
|
sumeq2sdv |
⊢ ( 𝜓 → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ if ( 𝜓 , ( 𝐴 / 𝑑 ) , 𝑚 ) ) / 𝑚 ) ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ ( 𝐴 / 𝑑 ) ) / 𝑚 ) ) ) |
| 88 |
87
|
oveq2d |
⊢ ( 𝜓 → ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ if ( 𝜓 , ( 𝐴 / 𝑑 ) , 𝑚 ) ) / 𝑚 ) ) ) = ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ ( 𝐴 / 𝑑 ) ) / 𝑚 ) ) ) ) |
| 89 |
88
|
sumeq2sdv |
⊢ ( 𝜓 → Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ if ( 𝜓 , ( 𝐴 / 𝑑 ) , 𝑚 ) ) / 𝑚 ) ) ) = Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ ( 𝐴 / 𝑑 ) ) / 𝑚 ) ) ) ) |
| 90 |
89
|
adantl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ if ( 𝜓 , ( 𝐴 / 𝑑 ) , 𝑚 ) ) / 𝑚 ) ) ) = Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ ( 𝐴 / 𝑑 ) ) / 𝑚 ) ) ) ) |
| 91 |
79 82 90
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) · ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) + if ( 𝜓 , ( log ‘ 𝐴 ) , 0 ) ) = Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ if ( 𝜓 , ( 𝐴 / 𝑑 ) , 𝑚 ) ) / 𝑚 ) ) ) ) |
| 92 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑋 ∈ 𝐷 ) |
| 93 |
|
elfzelz |
⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) → 𝑛 ∈ ℤ ) |
| 94 |
93
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑛 ∈ ℤ ) |
| 95 |
4 1 5 2 92 94
|
dchrzrhcl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ∈ ℂ ) |
| 96 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) → 𝑛 ∈ ℕ ) |
| 97 |
96
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑛 ∈ ℕ ) |
| 98 |
|
vmacl |
⊢ ( 𝑛 ∈ ℕ → ( Λ ‘ 𝑛 ) ∈ ℝ ) |
| 99 |
|
nndivre |
⊢ ( ( ( Λ ‘ 𝑛 ) ∈ ℝ ∧ 𝑛 ∈ ℕ ) → ( ( Λ ‘ 𝑛 ) / 𝑛 ) ∈ ℝ ) |
| 100 |
98 99
|
mpancom |
⊢ ( 𝑛 ∈ ℕ → ( ( Λ ‘ 𝑛 ) / 𝑛 ) ∈ ℝ ) |
| 101 |
100
|
recnd |
⊢ ( 𝑛 ∈ ℕ → ( ( Λ ‘ 𝑛 ) / 𝑛 ) ∈ ℂ ) |
| 102 |
97 101
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( Λ ‘ 𝑛 ) / 𝑛 ) ∈ ℂ ) |
| 103 |
95 102
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) · ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) ∈ ℂ ) |
| 104 |
11 103
|
fsumcl |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) · ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) ∈ ℂ ) |
| 105 |
104
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝜓 ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) · ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) ∈ ℂ ) |
| 106 |
105
|
addridd |
⊢ ( ( 𝜑 ∧ ¬ 𝜓 ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) · ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) + 0 ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) · ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) ) |
| 107 |
|
iffalse |
⊢ ( ¬ 𝜓 → if ( 𝜓 , ( log ‘ 𝐴 ) , 0 ) = 0 ) |
| 108 |
107
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝜓 ) → if ( 𝜓 , ( log ‘ 𝐴 ) , 0 ) = 0 ) |
| 109 |
108
|
oveq2d |
⊢ ( ( 𝜑 ∧ ¬ 𝜓 ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) · ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) + if ( 𝜓 , ( log ‘ 𝐴 ) , 0 ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) · ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) + 0 ) ) |
| 110 |
|
iffalse |
⊢ ( ¬ 𝜓 → if ( 𝜓 , ( 𝐴 / 𝑑 ) , 𝑚 ) = 𝑚 ) |
| 111 |
110
|
fveq2d |
⊢ ( ¬ 𝜓 → ( log ‘ if ( 𝜓 , ( 𝐴 / 𝑑 ) , 𝑚 ) ) = ( log ‘ 𝑚 ) ) |
| 112 |
111
|
oveq1d |
⊢ ( ¬ 𝜓 → ( ( log ‘ if ( 𝜓 , ( 𝐴 / 𝑑 ) , 𝑚 ) ) / 𝑚 ) = ( ( log ‘ 𝑚 ) / 𝑚 ) ) |
| 113 |
112
|
oveq2d |
⊢ ( ¬ 𝜓 → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ if ( 𝜓 , ( 𝐴 / 𝑑 ) , 𝑚 ) ) / 𝑚 ) ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ 𝑚 ) / 𝑚 ) ) ) |
| 114 |
113
|
sumeq2sdv |
⊢ ( ¬ 𝜓 → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ if ( 𝜓 , ( 𝐴 / 𝑑 ) , 𝑚 ) ) / 𝑚 ) ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ 𝑚 ) / 𝑚 ) ) ) |
| 115 |
114
|
oveq2d |
⊢ ( ¬ 𝜓 → ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ if ( 𝜓 , ( 𝐴 / 𝑑 ) , 𝑚 ) ) / 𝑚 ) ) ) = ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ 𝑚 ) / 𝑚 ) ) ) ) |
| 116 |
115
|
sumeq2sdv |
⊢ ( ¬ 𝜓 → Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ if ( 𝜓 , ( 𝐴 / 𝑑 ) , 𝑚 ) ) / 𝑚 ) ) ) = Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ 𝑚 ) / 𝑚 ) ) ) ) |
| 117 |
75
|
eqcomd |
⊢ ( 𝜑 → Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ 𝑚 ) / 𝑚 ) ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) · ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) ) |
| 118 |
116 117
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ ¬ 𝜓 ) → Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ if ( 𝜓 , ( 𝐴 / 𝑑 ) , 𝑚 ) ) / 𝑚 ) ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) · ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) ) |
| 119 |
106 109 118
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ¬ 𝜓 ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) · ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) + if ( 𝜓 , ( log ‘ 𝐴 ) , 0 ) ) = Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ if ( 𝜓 , ( 𝐴 / 𝑑 ) , 𝑚 ) ) / 𝑚 ) ) ) ) |
| 120 |
91 119
|
pm2.61dan |
⊢ ( 𝜑 → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) · ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) + if ( 𝜓 , ( log ‘ 𝐴 ) , 0 ) ) = Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ if ( 𝜓 , ( 𝐴 / 𝑑 ) , 𝑚 ) ) / 𝑚 ) ) ) ) |