| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfac5 |
⊢ ( CHOICE ↔ ∀ 𝑥 ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) |
| 2 |
|
n0 |
⊢ ( 𝑧 ≠ ∅ ↔ ∃ 𝑤 𝑤 ∈ 𝑧 ) |
| 3 |
2
|
ralbii |
⊢ ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ↔ ∀ 𝑧 ∈ 𝑥 ∃ 𝑤 𝑤 ∈ 𝑧 ) |
| 4 |
|
df-ral |
⊢ ( ∀ 𝑧 ∈ 𝑥 ∃ 𝑤 𝑤 ∈ 𝑧 ↔ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ∃ 𝑤 𝑤 ∈ 𝑧 ) ) |
| 5 |
3 4
|
bitri |
⊢ ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ↔ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ∃ 𝑤 𝑤 ∈ 𝑧 ) ) |
| 6 |
|
df-ne |
⊢ ( 𝑧 ≠ 𝑤 ↔ ¬ 𝑧 = 𝑤 ) |
| 7 |
|
disj1 |
⊢ ( ( 𝑧 ∩ 𝑤 ) = ∅ ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑧 → ¬ 𝑦 ∈ 𝑤 ) ) |
| 8 |
6 7
|
imbi12i |
⊢ ( ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ↔ ( ¬ 𝑧 = 𝑤 → ∀ 𝑦 ( 𝑦 ∈ 𝑧 → ¬ 𝑦 ∈ 𝑤 ) ) ) |
| 9 |
8
|
2ralbii |
⊢ ( ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ↔ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( ¬ 𝑧 = 𝑤 → ∀ 𝑦 ( 𝑦 ∈ 𝑧 → ¬ 𝑦 ∈ 𝑤 ) ) ) |
| 10 |
|
r2al |
⊢ ( ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( ¬ 𝑧 = 𝑤 → ∀ 𝑦 ( 𝑦 ∈ 𝑧 → ¬ 𝑦 ∈ 𝑤 ) ) ↔ ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 ∈ 𝑥 ∧ 𝑤 ∈ 𝑥 ) → ( ¬ 𝑧 = 𝑤 → ∀ 𝑦 ( 𝑦 ∈ 𝑧 → ¬ 𝑦 ∈ 𝑤 ) ) ) ) |
| 11 |
9 10
|
bitri |
⊢ ( ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ↔ ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 ∈ 𝑥 ∧ 𝑤 ∈ 𝑥 ) → ( ¬ 𝑧 = 𝑤 → ∀ 𝑦 ( 𝑦 ∈ 𝑧 → ¬ 𝑦 ∈ 𝑤 ) ) ) ) |
| 12 |
5 11
|
anbi12i |
⊢ ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ↔ ( ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ∃ 𝑤 𝑤 ∈ 𝑧 ) ∧ ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 ∈ 𝑥 ∧ 𝑤 ∈ 𝑥 ) → ( ¬ 𝑧 = 𝑤 → ∀ 𝑦 ( 𝑦 ∈ 𝑧 → ¬ 𝑦 ∈ 𝑤 ) ) ) ) ) |
| 13 |
|
elin |
⊢ ( 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ↔ ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ) |
| 14 |
13
|
eubii |
⊢ ( ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ↔ ∃! 𝑣 ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ) |
| 15 |
|
eu6 |
⊢ ( ∃! 𝑣 ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ↔ ∃ 𝑤 ∀ 𝑣 ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ↔ 𝑣 = 𝑤 ) ) |
| 16 |
14 15
|
bitri |
⊢ ( ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ↔ ∃ 𝑤 ∀ 𝑣 ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ↔ 𝑣 = 𝑤 ) ) |
| 17 |
16
|
ralbii |
⊢ ( ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ↔ ∀ 𝑧 ∈ 𝑥 ∃ 𝑤 ∀ 𝑣 ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ↔ 𝑣 = 𝑤 ) ) |
| 18 |
|
df-ral |
⊢ ( ∀ 𝑧 ∈ 𝑥 ∃ 𝑤 ∀ 𝑣 ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ↔ 𝑣 = 𝑤 ) ↔ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ∃ 𝑤 ∀ 𝑣 ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ↔ 𝑣 = 𝑤 ) ) ) |
| 19 |
17 18
|
bitri |
⊢ ( ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ↔ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ∃ 𝑤 ∀ 𝑣 ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ↔ 𝑣 = 𝑤 ) ) ) |
| 20 |
19
|
exbii |
⊢ ( ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ↔ ∃ 𝑦 ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ∃ 𝑤 ∀ 𝑣 ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ↔ 𝑣 = 𝑤 ) ) ) |
| 21 |
12 20
|
imbi12i |
⊢ ( ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ↔ ( ( ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ∃ 𝑤 𝑤 ∈ 𝑧 ) ∧ ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 ∈ 𝑥 ∧ 𝑤 ∈ 𝑥 ) → ( ¬ 𝑧 = 𝑤 → ∀ 𝑦 ( 𝑦 ∈ 𝑧 → ¬ 𝑦 ∈ 𝑤 ) ) ) ) → ∃ 𝑦 ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ∃ 𝑤 ∀ 𝑣 ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ↔ 𝑣 = 𝑤 ) ) ) ) |
| 22 |
21
|
albii |
⊢ ( ∀ 𝑥 ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ↔ ∀ 𝑥 ( ( ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ∃ 𝑤 𝑤 ∈ 𝑧 ) ∧ ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 ∈ 𝑥 ∧ 𝑤 ∈ 𝑥 ) → ( ¬ 𝑧 = 𝑤 → ∀ 𝑦 ( 𝑦 ∈ 𝑧 → ¬ 𝑦 ∈ 𝑤 ) ) ) ) → ∃ 𝑦 ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ∃ 𝑤 ∀ 𝑣 ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ↔ 𝑣 = 𝑤 ) ) ) ) |
| 23 |
1 22
|
bitri |
⊢ ( CHOICE ↔ ∀ 𝑥 ( ( ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ∃ 𝑤 𝑤 ∈ 𝑧 ) ∧ ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 ∈ 𝑥 ∧ 𝑤 ∈ 𝑥 ) → ( ¬ 𝑧 = 𝑤 → ∀ 𝑦 ( 𝑦 ∈ 𝑧 → ¬ 𝑦 ∈ 𝑤 ) ) ) ) → ∃ 𝑦 ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ∃ 𝑤 ∀ 𝑣 ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ↔ 𝑣 = 𝑤 ) ) ) ) |