| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3ancomb |
⊢ ( ( Ord 𝐴 ∧ ¬ Lim 𝐴 ∧ 𝐴 ≠ ∅ ) ↔ ( Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ ¬ Lim 𝐴 ) ) |
| 2 |
|
df-3an |
⊢ ( ( Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ ¬ Lim 𝐴 ) ↔ ( ( Ord 𝐴 ∧ 𝐴 ≠ ∅ ) ∧ ¬ Lim 𝐴 ) ) |
| 3 |
|
df-ne |
⊢ ( 𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅ ) |
| 4 |
3
|
anbi2i |
⊢ ( ( Ord 𝐴 ∧ 𝐴 ≠ ∅ ) ↔ ( Ord 𝐴 ∧ ¬ 𝐴 = ∅ ) ) |
| 5 |
4
|
imbi1i |
⊢ ( ( ( Ord 𝐴 ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ↔ ( ( Ord 𝐴 ∧ ¬ 𝐴 = ∅ ) → ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) |
| 6 |
|
pm5.6 |
⊢ ( ( ( Ord 𝐴 ∧ ¬ 𝐴 = ∅ ) → ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ↔ ( Ord 𝐴 → ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) ) |
| 7 |
|
iman |
⊢ ( ( Ord 𝐴 → ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) ↔ ¬ ( Ord 𝐴 ∧ ¬ ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) ) |
| 8 |
5 6 7
|
3bitrri |
⊢ ( ¬ ( Ord 𝐴 ∧ ¬ ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) ↔ ( ( Ord 𝐴 ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) |
| 9 |
|
dflim3 |
⊢ ( Lim 𝐴 ↔ ( Ord 𝐴 ∧ ¬ ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) ) |
| 10 |
8 9
|
xchnxbir |
⊢ ( ¬ Lim 𝐴 ↔ ( ( Ord 𝐴 ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) |
| 11 |
10
|
anbi2i |
⊢ ( ( ( Ord 𝐴 ∧ 𝐴 ≠ ∅ ) ∧ ¬ Lim 𝐴 ) ↔ ( ( Ord 𝐴 ∧ 𝐴 ≠ ∅ ) ∧ ( ( Ord 𝐴 ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) ) |
| 12 |
1 2 11
|
3bitri |
⊢ ( ( Ord 𝐴 ∧ ¬ Lim 𝐴 ∧ 𝐴 ≠ ∅ ) ↔ ( ( Ord 𝐴 ∧ 𝐴 ≠ ∅ ) ∧ ( ( Ord 𝐴 ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) ) |
| 13 |
|
pm3.35 |
⊢ ( ( ( Ord 𝐴 ∧ 𝐴 ≠ ∅ ) ∧ ( ( Ord 𝐴 ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) → ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) |
| 14 |
12 13
|
sylbi |
⊢ ( ( Ord 𝐴 ∧ ¬ Lim 𝐴 ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) |
| 15 |
|
eloni |
⊢ ( 𝑥 ∈ On → Ord 𝑥 ) |
| 16 |
|
ordsuc |
⊢ ( Ord 𝑥 ↔ Ord suc 𝑥 ) |
| 17 |
15 16
|
sylib |
⊢ ( 𝑥 ∈ On → Ord suc 𝑥 ) |
| 18 |
|
nlimsuc |
⊢ ( 𝑥 ∈ On → ¬ Lim suc 𝑥 ) |
| 19 |
|
nsuceq0 |
⊢ suc 𝑥 ≠ ∅ |
| 20 |
19
|
a1i |
⊢ ( 𝑥 ∈ On → suc 𝑥 ≠ ∅ ) |
| 21 |
17 18 20
|
3jca |
⊢ ( 𝑥 ∈ On → ( Ord suc 𝑥 ∧ ¬ Lim suc 𝑥 ∧ suc 𝑥 ≠ ∅ ) ) |
| 22 |
|
ordeq |
⊢ ( 𝐴 = suc 𝑥 → ( Ord 𝐴 ↔ Ord suc 𝑥 ) ) |
| 23 |
|
limeq |
⊢ ( 𝐴 = suc 𝑥 → ( Lim 𝐴 ↔ Lim suc 𝑥 ) ) |
| 24 |
23
|
notbid |
⊢ ( 𝐴 = suc 𝑥 → ( ¬ Lim 𝐴 ↔ ¬ Lim suc 𝑥 ) ) |
| 25 |
|
neeq1 |
⊢ ( 𝐴 = suc 𝑥 → ( 𝐴 ≠ ∅ ↔ suc 𝑥 ≠ ∅ ) ) |
| 26 |
22 24 25
|
3anbi123d |
⊢ ( 𝐴 = suc 𝑥 → ( ( Ord 𝐴 ∧ ¬ Lim 𝐴 ∧ 𝐴 ≠ ∅ ) ↔ ( Ord suc 𝑥 ∧ ¬ Lim suc 𝑥 ∧ suc 𝑥 ≠ ∅ ) ) ) |
| 27 |
21 26
|
syl5ibrcom |
⊢ ( 𝑥 ∈ On → ( 𝐴 = suc 𝑥 → ( Ord 𝐴 ∧ ¬ Lim 𝐴 ∧ 𝐴 ≠ ∅ ) ) ) |
| 28 |
27
|
rexlimiv |
⊢ ( ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 → ( Ord 𝐴 ∧ ¬ Lim 𝐴 ∧ 𝐴 ≠ ∅ ) ) |
| 29 |
14 28
|
impbii |
⊢ ( ( Ord 𝐴 ∧ ¬ Lim 𝐴 ∧ 𝐴 ≠ ∅ ) ↔ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) |