Step |
Hyp |
Ref |
Expression |
1 |
|
dihmeetlem14.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
dihmeetlem14.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
dihmeetlem14.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
4 |
|
dihmeetlem14.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
5 |
|
dihmeetlem14.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
6 |
|
dihmeetlem14.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
7 |
|
dihmeetlem14.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
dihmeetlem14.s |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
9 |
|
dihmeetlem14.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
10 |
|
dihmeetlem18.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
11 |
|
simpl1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑝 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
12 |
|
simpl2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑝 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ) → ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) |
13 |
|
simpr1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑝 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ) → ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ) |
14 |
|
simpl3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑝 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ) → 𝑌 ∈ 𝐵 ) |
15 |
|
simpr33 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑝 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ) → ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) |
16 |
|
simpr31 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑝 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ) → 𝑝 ≤ 𝑋 ) |
17 |
|
eqid |
⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) |
18 |
1 2 3 4 5 6 7 8 9 17
|
dihmeetlem17N |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ) ∧ ( 𝑌 ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ∧ 𝑝 ≤ 𝑋 ) ) → ( 𝑌 ∧ 𝑝 ) = ( 0. ‘ 𝐾 ) ) |
19 |
11 12 13 14 15 16 18
|
syl33anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑝 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ) → ( 𝑌 ∧ 𝑝 ) = ( 0. ‘ 𝐾 ) ) |
20 |
19
|
fveq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑝 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ) → ( 𝐼 ‘ ( 𝑌 ∧ 𝑝 ) ) = ( 𝐼 ‘ ( 0. ‘ 𝐾 ) ) ) |
21 |
|
simpr2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑝 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ) → ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ) |
22 |
|
simpr32 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑝 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ) → 𝑟 ≤ 𝑌 ) |
23 |
|
simpl1l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑝 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ) → 𝐾 ∈ HL ) |
24 |
|
hlop |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OP ) |
25 |
23 24
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑝 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ) → 𝐾 ∈ OP ) |
26 |
|
simpl1r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑝 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ) → 𝑊 ∈ 𝐻 ) |
27 |
1 3
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵 ) |
28 |
26 27
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑝 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ) → 𝑊 ∈ 𝐵 ) |
29 |
1 2 17
|
op0le |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑊 ∈ 𝐵 ) → ( 0. ‘ 𝐾 ) ≤ 𝑊 ) |
30 |
25 28 29
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑝 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ) → ( 0. ‘ 𝐾 ) ≤ 𝑊 ) |
31 |
19 30
|
eqbrtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑝 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ) → ( 𝑌 ∧ 𝑝 ) ≤ 𝑊 ) |
32 |
1 2 3 4 5 6 7 8 9
|
dihmeetlem16N |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ 𝑟 ≤ 𝑌 ∧ ( 𝑌 ∧ 𝑝 ) ≤ 𝑊 ) ) → ( 𝐼 ‘ ( 𝑌 ∧ 𝑝 ) ) = ( ( 𝐼 ‘ 𝑌 ) ∩ ( 𝐼 ‘ 𝑝 ) ) ) |
33 |
11 14 13 21 22 31 32
|
syl33anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑝 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ) → ( 𝐼 ‘ ( 𝑌 ∧ 𝑝 ) ) = ( ( 𝐼 ‘ 𝑌 ) ∩ ( 𝐼 ‘ 𝑝 ) ) ) |
34 |
17 3 9 7 10
|
dih0 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝐼 ‘ ( 0. ‘ 𝐾 ) ) = { 0 } ) |
35 |
11 34
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑝 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ) → ( 𝐼 ‘ ( 0. ‘ 𝐾 ) ) = { 0 } ) |
36 |
20 33 35
|
3eqtr3d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑝 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ) → ( ( 𝐼 ‘ 𝑌 ) ∩ ( 𝐼 ‘ 𝑝 ) ) = { 0 } ) |