Step |
Hyp |
Ref |
Expression |
1 |
|
dihmeetlem14.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
dihmeetlem14.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
dihmeetlem14.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
4 |
|
dihmeetlem14.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
5 |
|
dihmeetlem14.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
6 |
|
dihmeetlem14.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
7 |
|
dihmeetlem14.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
dihmeetlem14.s |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
9 |
|
dihmeetlem14.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
10 |
|
incom |
⊢ ( ( 𝐼 ‘ 𝑝 ) ∩ ( 𝐼 ‘ 𝑌 ) ) = ( ( 𝐼 ‘ 𝑌 ) ∩ ( 𝐼 ‘ 𝑝 ) ) |
11 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
12 |
1 2 3 4 5 6 7 8 9 11
|
dihmeetlem18N |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑝 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ) → ( ( 𝐼 ‘ 𝑌 ) ∩ ( 𝐼 ‘ 𝑝 ) ) = { ( 0g ‘ 𝑈 ) } ) |
13 |
10 12
|
syl5eq |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑝 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ) → ( ( 𝐼 ‘ 𝑝 ) ∩ ( 𝐼 ‘ 𝑌 ) ) = { ( 0g ‘ 𝑈 ) } ) |
14 |
13
|
oveq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑝 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ) → ( ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ⊕ ( ( 𝐼 ‘ 𝑝 ) ∩ ( 𝐼 ‘ 𝑌 ) ) ) = ( ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ⊕ { ( 0g ‘ 𝑈 ) } ) ) |
15 |
|
simpl1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑝 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
16 |
|
simpl2l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑝 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ) → 𝑋 ∈ 𝐵 ) |
17 |
|
simpl3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑝 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ) → 𝑌 ∈ 𝐵 ) |
18 |
|
simpr1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑝 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ) → ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ) |
19 |
|
simpr31 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑝 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ) → 𝑝 ≤ 𝑋 ) |
20 |
|
simpr33 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑝 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ) → ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) |
21 |
1 2 3 4 5 6 7 8 9
|
dihmeetlem12N |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ 𝑝 ≤ 𝑋 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → ( ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ⊕ ( ( 𝐼 ‘ 𝑝 ) ∩ ( 𝐼 ‘ 𝑌 ) ) ) = ( ( 𝐼 ‘ 𝑋 ) ∩ ( 𝐼 ‘ 𝑌 ) ) ) |
22 |
15 16 17 18 19 20 21
|
syl33anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑝 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ) → ( ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ⊕ ( ( 𝐼 ‘ 𝑝 ) ∩ ( 𝐼 ‘ 𝑌 ) ) ) = ( ( 𝐼 ‘ 𝑋 ) ∩ ( 𝐼 ‘ 𝑌 ) ) ) |
23 |
3 7 15
|
dvhlmod |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑝 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ) → 𝑈 ∈ LMod ) |
24 |
|
simpl1l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑝 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ) → 𝐾 ∈ HL ) |
25 |
24
|
hllatd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑝 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ) → 𝐾 ∈ Lat ) |
26 |
1 5
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) |
27 |
25 16 17 26
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑝 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ) → ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) |
28 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
29 |
1 3 9 7 28
|
dihlss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) → ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ∈ ( LSubSp ‘ 𝑈 ) ) |
30 |
15 27 29
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑝 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ) → ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ∈ ( LSubSp ‘ 𝑈 ) ) |
31 |
28
|
lsssubg |
⊢ ( ( 𝑈 ∈ LMod ∧ ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ∈ ( LSubSp ‘ 𝑈 ) ) → ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ∈ ( SubGrp ‘ 𝑈 ) ) |
32 |
23 30 31
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑝 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ) → ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ∈ ( SubGrp ‘ 𝑈 ) ) |
33 |
11 8
|
lsm01 |
⊢ ( ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ∈ ( SubGrp ‘ 𝑈 ) → ( ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ⊕ { ( 0g ‘ 𝑈 ) } ) = ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ) |
34 |
32 33
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑝 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ) → ( ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ⊕ { ( 0g ‘ 𝑈 ) } ) = ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ) |
35 |
14 22 34
|
3eqtr3rd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑝 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ) → ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) = ( ( 𝐼 ‘ 𝑋 ) ∩ ( 𝐼 ‘ 𝑌 ) ) ) |