Step |
Hyp |
Ref |
Expression |
1 |
|
dihmeetlem14.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
dihmeetlem14.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
dihmeetlem14.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
4 |
|
dihmeetlem14.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
5 |
|
dihmeetlem14.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
6 |
|
dihmeetlem14.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
7 |
|
dihmeetlem14.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
dihmeetlem14.s |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
9 |
|
dihmeetlem14.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
10 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
11 |
|
simp2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) |
12 |
|
simp3ll |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → 𝑌 ∈ 𝐵 ) |
13 |
|
simp3r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) |
14 |
1 2 4 5 6 3
|
lhpmcvr6N |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → ∃ 𝑞 ∈ 𝐴 ( ¬ 𝑞 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑌 ∧ 𝑞 ≤ 𝑋 ) ) |
15 |
10 11 12 13 14
|
syl112anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → ∃ 𝑞 ∈ 𝐴 ( ¬ 𝑞 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑌 ∧ 𝑞 ≤ 𝑋 ) ) |
16 |
|
simp3l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ) |
17 |
|
simp2l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → 𝑋 ∈ 𝐵 ) |
18 |
|
simp1l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → 𝐾 ∈ HL ) |
19 |
18
|
hllatd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → 𝐾 ∈ Lat ) |
20 |
1 5
|
latmcom |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑌 ∧ 𝑋 ) = ( 𝑋 ∧ 𝑌 ) ) |
21 |
19 12 17 20
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → ( 𝑌 ∧ 𝑋 ) = ( 𝑋 ∧ 𝑌 ) ) |
22 |
21 13
|
eqbrtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → ( 𝑌 ∧ 𝑋 ) ≤ 𝑊 ) |
23 |
1 2 4 5 6 3
|
lhpmcvr6N |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑌 ∧ 𝑋 ) ≤ 𝑊 ) ) → ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ¬ 𝑟 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ) ) |
24 |
10 16 17 22 23
|
syl112anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ¬ 𝑟 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ) ) |
25 |
|
reeanv |
⊢ ( ∃ 𝑞 ∈ 𝐴 ∃ 𝑟 ∈ 𝐴 ( ( ¬ 𝑞 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑌 ∧ 𝑞 ≤ 𝑋 ) ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ¬ 𝑟 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ) ) ↔ ( ∃ 𝑞 ∈ 𝐴 ( ¬ 𝑞 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑌 ∧ 𝑞 ≤ 𝑋 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ¬ 𝑟 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ) ) ) |
26 |
|
simp11 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ¬ 𝑞 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑌 ∧ 𝑞 ≤ 𝑋 ) ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ¬ 𝑟 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
27 |
|
simp12 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ¬ 𝑞 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑌 ∧ 𝑞 ≤ 𝑋 ) ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ¬ 𝑟 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ) ) ) → ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) |
28 |
12
|
3ad2ant1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ¬ 𝑞 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑌 ∧ 𝑞 ≤ 𝑋 ) ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ¬ 𝑟 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ) ) ) → 𝑌 ∈ 𝐵 ) |
29 |
|
simp2l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ¬ 𝑞 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑌 ∧ 𝑞 ≤ 𝑋 ) ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ¬ 𝑟 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ) ) ) → 𝑞 ∈ 𝐴 ) |
30 |
|
simp3l1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ¬ 𝑞 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑌 ∧ 𝑞 ≤ 𝑋 ) ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ¬ 𝑟 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ) ) ) → ¬ 𝑞 ≤ 𝑊 ) |
31 |
29 30
|
jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ¬ 𝑞 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑌 ∧ 𝑞 ≤ 𝑋 ) ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ¬ 𝑟 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ) ) ) → ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ) |
32 |
|
simp2r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ¬ 𝑞 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑌 ∧ 𝑞 ≤ 𝑋 ) ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ¬ 𝑟 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ) ) ) → 𝑟 ∈ 𝐴 ) |
33 |
|
simp3r1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ¬ 𝑞 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑌 ∧ 𝑞 ≤ 𝑋 ) ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ¬ 𝑟 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ) ) ) → ¬ 𝑟 ≤ 𝑊 ) |
34 |
32 33
|
jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ¬ 𝑞 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑌 ∧ 𝑞 ≤ 𝑋 ) ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ¬ 𝑟 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ) ) ) → ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ) |
35 |
|
simp3l3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ¬ 𝑞 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑌 ∧ 𝑞 ≤ 𝑋 ) ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ¬ 𝑟 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ) ) ) → 𝑞 ≤ 𝑋 ) |
36 |
|
simp3r3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ¬ 𝑞 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑌 ∧ 𝑞 ≤ 𝑋 ) ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ¬ 𝑟 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ) ) ) → 𝑟 ≤ 𝑌 ) |
37 |
|
simp13r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ¬ 𝑞 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑌 ∧ 𝑞 ≤ 𝑋 ) ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ¬ 𝑟 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ) ) ) → ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) |
38 |
35 36 37
|
3jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ¬ 𝑞 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑌 ∧ 𝑞 ≤ 𝑋 ) ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ¬ 𝑟 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ) ) ) → ( 𝑞 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) |
39 |
1 2 3 4 5 6 7 8 9
|
dihmeetlem19N |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑞 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ) → ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) = ( ( 𝐼 ‘ 𝑋 ) ∩ ( 𝐼 ‘ 𝑌 ) ) ) |
40 |
26 27 28 31 34 38 39
|
syl33anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ¬ 𝑞 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑌 ∧ 𝑞 ≤ 𝑋 ) ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ¬ 𝑟 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ) ) ) → ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) = ( ( 𝐼 ‘ 𝑋 ) ∩ ( 𝐼 ‘ 𝑌 ) ) ) |
41 |
40
|
3exp |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → ( ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) → ( ( ( ¬ 𝑞 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑌 ∧ 𝑞 ≤ 𝑋 ) ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ¬ 𝑟 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ) ) → ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) = ( ( 𝐼 ‘ 𝑋 ) ∩ ( 𝐼 ‘ 𝑌 ) ) ) ) ) |
42 |
41
|
rexlimdvv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → ( ∃ 𝑞 ∈ 𝐴 ∃ 𝑟 ∈ 𝐴 ( ( ¬ 𝑞 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑌 ∧ 𝑞 ≤ 𝑋 ) ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ¬ 𝑟 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ) ) → ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) = ( ( 𝐼 ‘ 𝑋 ) ∩ ( 𝐼 ‘ 𝑌 ) ) ) ) |
43 |
25 42
|
syl5bir |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → ( ( ∃ 𝑞 ∈ 𝐴 ( ¬ 𝑞 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑌 ∧ 𝑞 ≤ 𝑋 ) ∧ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ¬ 𝑟 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ) ) → ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) = ( ( 𝐼 ‘ 𝑋 ) ∩ ( 𝐼 ‘ 𝑌 ) ) ) ) |
44 |
15 24 43
|
mp2and |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) = ( ( 𝐼 ‘ 𝑋 ) ∩ ( 𝐼 ‘ 𝑌 ) ) ) |