Metamath Proof Explorer


Theorem dihmeetlem20N

Description: Lemma for isomorphism H of a lattice meet. (Contributed by NM, 7-Apr-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dihmeetlem14.b 𝐵 = ( Base ‘ 𝐾 )
dihmeetlem14.l = ( le ‘ 𝐾 )
dihmeetlem14.h 𝐻 = ( LHyp ‘ 𝐾 )
dihmeetlem14.j = ( join ‘ 𝐾 )
dihmeetlem14.m = ( meet ‘ 𝐾 )
dihmeetlem14.a 𝐴 = ( Atoms ‘ 𝐾 )
dihmeetlem14.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dihmeetlem14.s = ( LSSum ‘ 𝑈 )
dihmeetlem14.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
Assertion dihmeetlem20N ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑌𝐵 ∧ ¬ 𝑌 𝑊 ) ∧ ( 𝑋 𝑌 ) 𝑊 ) ) → ( 𝐼 ‘ ( 𝑋 𝑌 ) ) = ( ( 𝐼𝑋 ) ∩ ( 𝐼𝑌 ) ) )

Proof

Step Hyp Ref Expression
1 dihmeetlem14.b 𝐵 = ( Base ‘ 𝐾 )
2 dihmeetlem14.l = ( le ‘ 𝐾 )
3 dihmeetlem14.h 𝐻 = ( LHyp ‘ 𝐾 )
4 dihmeetlem14.j = ( join ‘ 𝐾 )
5 dihmeetlem14.m = ( meet ‘ 𝐾 )
6 dihmeetlem14.a 𝐴 = ( Atoms ‘ 𝐾 )
7 dihmeetlem14.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
8 dihmeetlem14.s = ( LSSum ‘ 𝑈 )
9 dihmeetlem14.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
10 simp1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑌𝐵 ∧ ¬ 𝑌 𝑊 ) ∧ ( 𝑋 𝑌 ) 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
11 simp2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑌𝐵 ∧ ¬ 𝑌 𝑊 ) ∧ ( 𝑋 𝑌 ) 𝑊 ) ) → ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) )
12 simp3ll ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑌𝐵 ∧ ¬ 𝑌 𝑊 ) ∧ ( 𝑋 𝑌 ) 𝑊 ) ) → 𝑌𝐵 )
13 simp3r ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑌𝐵 ∧ ¬ 𝑌 𝑊 ) ∧ ( 𝑋 𝑌 ) 𝑊 ) ) → ( 𝑋 𝑌 ) 𝑊 )
14 1 2 4 5 6 3 lhpmcvr6N ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵 ∧ ( 𝑋 𝑌 ) 𝑊 ) ) → ∃ 𝑞𝐴 ( ¬ 𝑞 𝑊 ∧ ¬ 𝑞 𝑌𝑞 𝑋 ) )
15 10 11 12 13 14 syl112anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑌𝐵 ∧ ¬ 𝑌 𝑊 ) ∧ ( 𝑋 𝑌 ) 𝑊 ) ) → ∃ 𝑞𝐴 ( ¬ 𝑞 𝑊 ∧ ¬ 𝑞 𝑌𝑞 𝑋 ) )
16 simp3l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑌𝐵 ∧ ¬ 𝑌 𝑊 ) ∧ ( 𝑋 𝑌 ) 𝑊 ) ) → ( 𝑌𝐵 ∧ ¬ 𝑌 𝑊 ) )
17 simp2l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑌𝐵 ∧ ¬ 𝑌 𝑊 ) ∧ ( 𝑋 𝑌 ) 𝑊 ) ) → 𝑋𝐵 )
18 simp1l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑌𝐵 ∧ ¬ 𝑌 𝑊 ) ∧ ( 𝑋 𝑌 ) 𝑊 ) ) → 𝐾 ∈ HL )
19 18 hllatd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑌𝐵 ∧ ¬ 𝑌 𝑊 ) ∧ ( 𝑋 𝑌 ) 𝑊 ) ) → 𝐾 ∈ Lat )
20 1 5 latmcom ( ( 𝐾 ∈ Lat ∧ 𝑌𝐵𝑋𝐵 ) → ( 𝑌 𝑋 ) = ( 𝑋 𝑌 ) )
21 19 12 17 20 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑌𝐵 ∧ ¬ 𝑌 𝑊 ) ∧ ( 𝑋 𝑌 ) 𝑊 ) ) → ( 𝑌 𝑋 ) = ( 𝑋 𝑌 ) )
22 21 13 eqbrtrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑌𝐵 ∧ ¬ 𝑌 𝑊 ) ∧ ( 𝑋 𝑌 ) 𝑊 ) ) → ( 𝑌 𝑋 ) 𝑊 )
23 1 2 4 5 6 3 lhpmcvr6N ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑌𝐵 ∧ ¬ 𝑌 𝑊 ) ∧ ( 𝑋𝐵 ∧ ( 𝑌 𝑋 ) 𝑊 ) ) → ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ¬ 𝑟 𝑋𝑟 𝑌 ) )
24 10 16 17 22 23 syl112anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑌𝐵 ∧ ¬ 𝑌 𝑊 ) ∧ ( 𝑋 𝑌 ) 𝑊 ) ) → ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ¬ 𝑟 𝑋𝑟 𝑌 ) )
25 reeanv ( ∃ 𝑞𝐴𝑟𝐴 ( ( ¬ 𝑞 𝑊 ∧ ¬ 𝑞 𝑌𝑞 𝑋 ) ∧ ( ¬ 𝑟 𝑊 ∧ ¬ 𝑟 𝑋𝑟 𝑌 ) ) ↔ ( ∃ 𝑞𝐴 ( ¬ 𝑞 𝑊 ∧ ¬ 𝑞 𝑌𝑞 𝑋 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ¬ 𝑟 𝑋𝑟 𝑌 ) ) )
26 simp11 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑌𝐵 ∧ ¬ 𝑌 𝑊 ) ∧ ( 𝑋 𝑌 ) 𝑊 ) ) ∧ ( 𝑞𝐴𝑟𝐴 ) ∧ ( ( ¬ 𝑞 𝑊 ∧ ¬ 𝑞 𝑌𝑞 𝑋 ) ∧ ( ¬ 𝑟 𝑊 ∧ ¬ 𝑟 𝑋𝑟 𝑌 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
27 simp12 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑌𝐵 ∧ ¬ 𝑌 𝑊 ) ∧ ( 𝑋 𝑌 ) 𝑊 ) ) ∧ ( 𝑞𝐴𝑟𝐴 ) ∧ ( ( ¬ 𝑞 𝑊 ∧ ¬ 𝑞 𝑌𝑞 𝑋 ) ∧ ( ¬ 𝑟 𝑊 ∧ ¬ 𝑟 𝑋𝑟 𝑌 ) ) ) → ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) )
28 12 3ad2ant1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑌𝐵 ∧ ¬ 𝑌 𝑊 ) ∧ ( 𝑋 𝑌 ) 𝑊 ) ) ∧ ( 𝑞𝐴𝑟𝐴 ) ∧ ( ( ¬ 𝑞 𝑊 ∧ ¬ 𝑞 𝑌𝑞 𝑋 ) ∧ ( ¬ 𝑟 𝑊 ∧ ¬ 𝑟 𝑋𝑟 𝑌 ) ) ) → 𝑌𝐵 )
29 simp2l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑌𝐵 ∧ ¬ 𝑌 𝑊 ) ∧ ( 𝑋 𝑌 ) 𝑊 ) ) ∧ ( 𝑞𝐴𝑟𝐴 ) ∧ ( ( ¬ 𝑞 𝑊 ∧ ¬ 𝑞 𝑌𝑞 𝑋 ) ∧ ( ¬ 𝑟 𝑊 ∧ ¬ 𝑟 𝑋𝑟 𝑌 ) ) ) → 𝑞𝐴 )
30 simp3l1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑌𝐵 ∧ ¬ 𝑌 𝑊 ) ∧ ( 𝑋 𝑌 ) 𝑊 ) ) ∧ ( 𝑞𝐴𝑟𝐴 ) ∧ ( ( ¬ 𝑞 𝑊 ∧ ¬ 𝑞 𝑌𝑞 𝑋 ) ∧ ( ¬ 𝑟 𝑊 ∧ ¬ 𝑟 𝑋𝑟 𝑌 ) ) ) → ¬ 𝑞 𝑊 )
31 29 30 jca ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑌𝐵 ∧ ¬ 𝑌 𝑊 ) ∧ ( 𝑋 𝑌 ) 𝑊 ) ) ∧ ( 𝑞𝐴𝑟𝐴 ) ∧ ( ( ¬ 𝑞 𝑊 ∧ ¬ 𝑞 𝑌𝑞 𝑋 ) ∧ ( ¬ 𝑟 𝑊 ∧ ¬ 𝑟 𝑋𝑟 𝑌 ) ) ) → ( 𝑞𝐴 ∧ ¬ 𝑞 𝑊 ) )
32 simp2r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑌𝐵 ∧ ¬ 𝑌 𝑊 ) ∧ ( 𝑋 𝑌 ) 𝑊 ) ) ∧ ( 𝑞𝐴𝑟𝐴 ) ∧ ( ( ¬ 𝑞 𝑊 ∧ ¬ 𝑞 𝑌𝑞 𝑋 ) ∧ ( ¬ 𝑟 𝑊 ∧ ¬ 𝑟 𝑋𝑟 𝑌 ) ) ) → 𝑟𝐴 )
33 simp3r1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑌𝐵 ∧ ¬ 𝑌 𝑊 ) ∧ ( 𝑋 𝑌 ) 𝑊 ) ) ∧ ( 𝑞𝐴𝑟𝐴 ) ∧ ( ( ¬ 𝑞 𝑊 ∧ ¬ 𝑞 𝑌𝑞 𝑋 ) ∧ ( ¬ 𝑟 𝑊 ∧ ¬ 𝑟 𝑋𝑟 𝑌 ) ) ) → ¬ 𝑟 𝑊 )
34 32 33 jca ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑌𝐵 ∧ ¬ 𝑌 𝑊 ) ∧ ( 𝑋 𝑌 ) 𝑊 ) ) ∧ ( 𝑞𝐴𝑟𝐴 ) ∧ ( ( ¬ 𝑞 𝑊 ∧ ¬ 𝑞 𝑌𝑞 𝑋 ) ∧ ( ¬ 𝑟 𝑊 ∧ ¬ 𝑟 𝑋𝑟 𝑌 ) ) ) → ( 𝑟𝐴 ∧ ¬ 𝑟 𝑊 ) )
35 simp3l3 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑌𝐵 ∧ ¬ 𝑌 𝑊 ) ∧ ( 𝑋 𝑌 ) 𝑊 ) ) ∧ ( 𝑞𝐴𝑟𝐴 ) ∧ ( ( ¬ 𝑞 𝑊 ∧ ¬ 𝑞 𝑌𝑞 𝑋 ) ∧ ( ¬ 𝑟 𝑊 ∧ ¬ 𝑟 𝑋𝑟 𝑌 ) ) ) → 𝑞 𝑋 )
36 simp3r3 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑌𝐵 ∧ ¬ 𝑌 𝑊 ) ∧ ( 𝑋 𝑌 ) 𝑊 ) ) ∧ ( 𝑞𝐴𝑟𝐴 ) ∧ ( ( ¬ 𝑞 𝑊 ∧ ¬ 𝑞 𝑌𝑞 𝑋 ) ∧ ( ¬ 𝑟 𝑊 ∧ ¬ 𝑟 𝑋𝑟 𝑌 ) ) ) → 𝑟 𝑌 )
37 simp13r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑌𝐵 ∧ ¬ 𝑌 𝑊 ) ∧ ( 𝑋 𝑌 ) 𝑊 ) ) ∧ ( 𝑞𝐴𝑟𝐴 ) ∧ ( ( ¬ 𝑞 𝑊 ∧ ¬ 𝑞 𝑌𝑞 𝑋 ) ∧ ( ¬ 𝑟 𝑊 ∧ ¬ 𝑟 𝑋𝑟 𝑌 ) ) ) → ( 𝑋 𝑌 ) 𝑊 )
38 35 36 37 3jca ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑌𝐵 ∧ ¬ 𝑌 𝑊 ) ∧ ( 𝑋 𝑌 ) 𝑊 ) ) ∧ ( 𝑞𝐴𝑟𝐴 ) ∧ ( ( ¬ 𝑞 𝑊 ∧ ¬ 𝑞 𝑌𝑞 𝑋 ) ∧ ( ¬ 𝑟 𝑊 ∧ ¬ 𝑟 𝑋𝑟 𝑌 ) ) ) → ( 𝑞 𝑋𝑟 𝑌 ∧ ( 𝑋 𝑌 ) 𝑊 ) )
39 1 2 3 4 5 6 7 8 9 dihmeetlem19N ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ 𝑌𝐵 ) ∧ ( ( 𝑞𝐴 ∧ ¬ 𝑞 𝑊 ) ∧ ( 𝑟𝐴 ∧ ¬ 𝑟 𝑊 ) ∧ ( 𝑞 𝑋𝑟 𝑌 ∧ ( 𝑋 𝑌 ) 𝑊 ) ) ) → ( 𝐼 ‘ ( 𝑋 𝑌 ) ) = ( ( 𝐼𝑋 ) ∩ ( 𝐼𝑌 ) ) )
40 26 27 28 31 34 38 39 syl33anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑌𝐵 ∧ ¬ 𝑌 𝑊 ) ∧ ( 𝑋 𝑌 ) 𝑊 ) ) ∧ ( 𝑞𝐴𝑟𝐴 ) ∧ ( ( ¬ 𝑞 𝑊 ∧ ¬ 𝑞 𝑌𝑞 𝑋 ) ∧ ( ¬ 𝑟 𝑊 ∧ ¬ 𝑟 𝑋𝑟 𝑌 ) ) ) → ( 𝐼 ‘ ( 𝑋 𝑌 ) ) = ( ( 𝐼𝑋 ) ∩ ( 𝐼𝑌 ) ) )
41 40 3exp ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑌𝐵 ∧ ¬ 𝑌 𝑊 ) ∧ ( 𝑋 𝑌 ) 𝑊 ) ) → ( ( 𝑞𝐴𝑟𝐴 ) → ( ( ( ¬ 𝑞 𝑊 ∧ ¬ 𝑞 𝑌𝑞 𝑋 ) ∧ ( ¬ 𝑟 𝑊 ∧ ¬ 𝑟 𝑋𝑟 𝑌 ) ) → ( 𝐼 ‘ ( 𝑋 𝑌 ) ) = ( ( 𝐼𝑋 ) ∩ ( 𝐼𝑌 ) ) ) ) )
42 41 rexlimdvv ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑌𝐵 ∧ ¬ 𝑌 𝑊 ) ∧ ( 𝑋 𝑌 ) 𝑊 ) ) → ( ∃ 𝑞𝐴𝑟𝐴 ( ( ¬ 𝑞 𝑊 ∧ ¬ 𝑞 𝑌𝑞 𝑋 ) ∧ ( ¬ 𝑟 𝑊 ∧ ¬ 𝑟 𝑋𝑟 𝑌 ) ) → ( 𝐼 ‘ ( 𝑋 𝑌 ) ) = ( ( 𝐼𝑋 ) ∩ ( 𝐼𝑌 ) ) ) )
43 25 42 syl5bir ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑌𝐵 ∧ ¬ 𝑌 𝑊 ) ∧ ( 𝑋 𝑌 ) 𝑊 ) ) → ( ( ∃ 𝑞𝐴 ( ¬ 𝑞 𝑊 ∧ ¬ 𝑞 𝑌𝑞 𝑋 ) ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ¬ 𝑟 𝑋𝑟 𝑌 ) ) → ( 𝐼 ‘ ( 𝑋 𝑌 ) ) = ( ( 𝐼𝑋 ) ∩ ( 𝐼𝑌 ) ) ) )
44 15 24 43 mp2and ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑌𝐵 ∧ ¬ 𝑌 𝑊 ) ∧ ( 𝑋 𝑌 ) 𝑊 ) ) → ( 𝐼 ‘ ( 𝑋 𝑌 ) ) = ( ( 𝐼𝑋 ) ∩ ( 𝐼𝑌 ) ) )