Description: Lemma for isomorphism H of a lattice meet. (Contributed by NM, 7-Apr-2014) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dihmeetlem14.b | |
|
dihmeetlem14.l | |
||
dihmeetlem14.h | |
||
dihmeetlem14.j | |
||
dihmeetlem14.m | |
||
dihmeetlem14.a | |
||
dihmeetlem14.u | |
||
dihmeetlem14.s | |
||
dihmeetlem14.i | |
||
Assertion | dihmeetlem20N | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dihmeetlem14.b | |
|
2 | dihmeetlem14.l | |
|
3 | dihmeetlem14.h | |
|
4 | dihmeetlem14.j | |
|
5 | dihmeetlem14.m | |
|
6 | dihmeetlem14.a | |
|
7 | dihmeetlem14.u | |
|
8 | dihmeetlem14.s | |
|
9 | dihmeetlem14.i | |
|
10 | simp1 | |
|
11 | simp2 | |
|
12 | simp3ll | |
|
13 | simp3r | |
|
14 | 1 2 4 5 6 3 | lhpmcvr6N | |
15 | 10 11 12 13 14 | syl112anc | |
16 | simp3l | |
|
17 | simp2l | |
|
18 | simp1l | |
|
19 | 18 | hllatd | |
20 | 1 5 | latmcom | |
21 | 19 12 17 20 | syl3anc | |
22 | 21 13 | eqbrtrd | |
23 | 1 2 4 5 6 3 | lhpmcvr6N | |
24 | 10 16 17 22 23 | syl112anc | |
25 | reeanv | |
|
26 | simp11 | |
|
27 | simp12 | |
|
28 | 12 | 3ad2ant1 | |
29 | simp2l | |
|
30 | simp3l1 | |
|
31 | 29 30 | jca | |
32 | simp2r | |
|
33 | simp3r1 | |
|
34 | 32 33 | jca | |
35 | simp3l3 | |
|
36 | simp3r3 | |
|
37 | simp13r | |
|
38 | 35 36 37 | 3jca | |
39 | 1 2 3 4 5 6 7 8 9 | dihmeetlem19N | |
40 | 26 27 28 31 34 38 39 | syl33anc | |
41 | 40 | 3exp | |
42 | 41 | rexlimdvv | |
43 | 25 42 | biimtrrid | |
44 | 15 24 43 | mp2and | |