Metamath Proof Explorer


Theorem dihmeetlem20N

Description: Lemma for isomorphism H of a lattice meet. (Contributed by NM, 7-Apr-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dihmeetlem14.b B=BaseK
dihmeetlem14.l ˙=K
dihmeetlem14.h H=LHypK
dihmeetlem14.j ˙=joinK
dihmeetlem14.m ˙=meetK
dihmeetlem14.a A=AtomsK
dihmeetlem14.u U=DVecHKW
dihmeetlem14.s ˙=LSSumU
dihmeetlem14.i I=DIsoHKW
Assertion dihmeetlem20N KHLWHXB¬X˙WYB¬Y˙WX˙Y˙WIX˙Y=IXIY

Proof

Step Hyp Ref Expression
1 dihmeetlem14.b B=BaseK
2 dihmeetlem14.l ˙=K
3 dihmeetlem14.h H=LHypK
4 dihmeetlem14.j ˙=joinK
5 dihmeetlem14.m ˙=meetK
6 dihmeetlem14.a A=AtomsK
7 dihmeetlem14.u U=DVecHKW
8 dihmeetlem14.s ˙=LSSumU
9 dihmeetlem14.i I=DIsoHKW
10 simp1 KHLWHXB¬X˙WYB¬Y˙WX˙Y˙WKHLWH
11 simp2 KHLWHXB¬X˙WYB¬Y˙WX˙Y˙WXB¬X˙W
12 simp3ll KHLWHXB¬X˙WYB¬Y˙WX˙Y˙WYB
13 simp3r KHLWHXB¬X˙WYB¬Y˙WX˙Y˙WX˙Y˙W
14 1 2 4 5 6 3 lhpmcvr6N KHLWHXB¬X˙WYBX˙Y˙WqA¬q˙W¬q˙Yq˙X
15 10 11 12 13 14 syl112anc KHLWHXB¬X˙WYB¬Y˙WX˙Y˙WqA¬q˙W¬q˙Yq˙X
16 simp3l KHLWHXB¬X˙WYB¬Y˙WX˙Y˙WYB¬Y˙W
17 simp2l KHLWHXB¬X˙WYB¬Y˙WX˙Y˙WXB
18 simp1l KHLWHXB¬X˙WYB¬Y˙WX˙Y˙WKHL
19 18 hllatd KHLWHXB¬X˙WYB¬Y˙WX˙Y˙WKLat
20 1 5 latmcom KLatYBXBY˙X=X˙Y
21 19 12 17 20 syl3anc KHLWHXB¬X˙WYB¬Y˙WX˙Y˙WY˙X=X˙Y
22 21 13 eqbrtrd KHLWHXB¬X˙WYB¬Y˙WX˙Y˙WY˙X˙W
23 1 2 4 5 6 3 lhpmcvr6N KHLWHYB¬Y˙WXBY˙X˙WrA¬r˙W¬r˙Xr˙Y
24 10 16 17 22 23 syl112anc KHLWHXB¬X˙WYB¬Y˙WX˙Y˙WrA¬r˙W¬r˙Xr˙Y
25 reeanv qArA¬q˙W¬q˙Yq˙X¬r˙W¬r˙Xr˙YqA¬q˙W¬q˙Yq˙XrA¬r˙W¬r˙Xr˙Y
26 simp11 KHLWHXB¬X˙WYB¬Y˙WX˙Y˙WqArA¬q˙W¬q˙Yq˙X¬r˙W¬r˙Xr˙YKHLWH
27 simp12 KHLWHXB¬X˙WYB¬Y˙WX˙Y˙WqArA¬q˙W¬q˙Yq˙X¬r˙W¬r˙Xr˙YXB¬X˙W
28 12 3ad2ant1 KHLWHXB¬X˙WYB¬Y˙WX˙Y˙WqArA¬q˙W¬q˙Yq˙X¬r˙W¬r˙Xr˙YYB
29 simp2l KHLWHXB¬X˙WYB¬Y˙WX˙Y˙WqArA¬q˙W¬q˙Yq˙X¬r˙W¬r˙Xr˙YqA
30 simp3l1 KHLWHXB¬X˙WYB¬Y˙WX˙Y˙WqArA¬q˙W¬q˙Yq˙X¬r˙W¬r˙Xr˙Y¬q˙W
31 29 30 jca KHLWHXB¬X˙WYB¬Y˙WX˙Y˙WqArA¬q˙W¬q˙Yq˙X¬r˙W¬r˙Xr˙YqA¬q˙W
32 simp2r KHLWHXB¬X˙WYB¬Y˙WX˙Y˙WqArA¬q˙W¬q˙Yq˙X¬r˙W¬r˙Xr˙YrA
33 simp3r1 KHLWHXB¬X˙WYB¬Y˙WX˙Y˙WqArA¬q˙W¬q˙Yq˙X¬r˙W¬r˙Xr˙Y¬r˙W
34 32 33 jca KHLWHXB¬X˙WYB¬Y˙WX˙Y˙WqArA¬q˙W¬q˙Yq˙X¬r˙W¬r˙Xr˙YrA¬r˙W
35 simp3l3 KHLWHXB¬X˙WYB¬Y˙WX˙Y˙WqArA¬q˙W¬q˙Yq˙X¬r˙W¬r˙Xr˙Yq˙X
36 simp3r3 KHLWHXB¬X˙WYB¬Y˙WX˙Y˙WqArA¬q˙W¬q˙Yq˙X¬r˙W¬r˙Xr˙Yr˙Y
37 simp13r KHLWHXB¬X˙WYB¬Y˙WX˙Y˙WqArA¬q˙W¬q˙Yq˙X¬r˙W¬r˙Xr˙YX˙Y˙W
38 35 36 37 3jca KHLWHXB¬X˙WYB¬Y˙WX˙Y˙WqArA¬q˙W¬q˙Yq˙X¬r˙W¬r˙Xr˙Yq˙Xr˙YX˙Y˙W
39 1 2 3 4 5 6 7 8 9 dihmeetlem19N KHLWHXB¬X˙WYBqA¬q˙WrA¬r˙Wq˙Xr˙YX˙Y˙WIX˙Y=IXIY
40 26 27 28 31 34 38 39 syl33anc KHLWHXB¬X˙WYB¬Y˙WX˙Y˙WqArA¬q˙W¬q˙Yq˙X¬r˙W¬r˙Xr˙YIX˙Y=IXIY
41 40 3exp KHLWHXB¬X˙WYB¬Y˙WX˙Y˙WqArA¬q˙W¬q˙Yq˙X¬r˙W¬r˙Xr˙YIX˙Y=IXIY
42 41 rexlimdvv KHLWHXB¬X˙WYB¬Y˙WX˙Y˙WqArA¬q˙W¬q˙Yq˙X¬r˙W¬r˙Xr˙YIX˙Y=IXIY
43 25 42 biimtrrid KHLWHXB¬X˙WYB¬Y˙WX˙Y˙WqA¬q˙W¬q˙Yq˙XrA¬r˙W¬r˙Xr˙YIX˙Y=IXIY
44 15 24 43 mp2and KHLWHXB¬X˙WYB¬Y˙WX˙Y˙WIX˙Y=IXIY