| Step |
Hyp |
Ref |
Expression |
| 1 |
|
divalglem8.1 |
⊢ 𝑁 ∈ ℤ |
| 2 |
|
divalglem8.2 |
⊢ 𝐷 ∈ ℤ |
| 3 |
|
divalglem8.3 |
⊢ 𝐷 ≠ 0 |
| 4 |
|
divalglem8.4 |
⊢ 𝑆 = { 𝑟 ∈ ℕ0 ∣ 𝐷 ∥ ( 𝑁 − 𝑟 ) } |
| 5 |
|
eqid |
⊢ inf ( 𝑆 , ℝ , < ) = inf ( 𝑆 , ℝ , < ) |
| 6 |
1 2 3 4 5
|
divalglem9 |
⊢ ∃! 𝑥 ∈ 𝑆 𝑥 < ( abs ‘ 𝐷 ) |
| 7 |
|
elnn0z |
⊢ ( 𝑥 ∈ ℕ0 ↔ ( 𝑥 ∈ ℤ ∧ 0 ≤ 𝑥 ) ) |
| 8 |
7
|
anbi2i |
⊢ ( ( 𝑥 < ( abs ‘ 𝐷 ) ∧ 𝑥 ∈ ℕ0 ) ↔ ( 𝑥 < ( abs ‘ 𝐷 ) ∧ ( 𝑥 ∈ ℤ ∧ 0 ≤ 𝑥 ) ) ) |
| 9 |
|
an12 |
⊢ ( ( 𝑥 < ( abs ‘ 𝐷 ) ∧ ( 𝑥 ∈ ℤ ∧ 0 ≤ 𝑥 ) ) ↔ ( 𝑥 ∈ ℤ ∧ ( 𝑥 < ( abs ‘ 𝐷 ) ∧ 0 ≤ 𝑥 ) ) ) |
| 10 |
|
ancom |
⊢ ( ( 𝑥 < ( abs ‘ 𝐷 ) ∧ 0 ≤ 𝑥 ) ↔ ( 0 ≤ 𝑥 ∧ 𝑥 < ( abs ‘ 𝐷 ) ) ) |
| 11 |
10
|
anbi2i |
⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑥 < ( abs ‘ 𝐷 ) ∧ 0 ≤ 𝑥 ) ) ↔ ( 𝑥 ∈ ℤ ∧ ( 0 ≤ 𝑥 ∧ 𝑥 < ( abs ‘ 𝐷 ) ) ) ) |
| 12 |
9 11
|
bitri |
⊢ ( ( 𝑥 < ( abs ‘ 𝐷 ) ∧ ( 𝑥 ∈ ℤ ∧ 0 ≤ 𝑥 ) ) ↔ ( 𝑥 ∈ ℤ ∧ ( 0 ≤ 𝑥 ∧ 𝑥 < ( abs ‘ 𝐷 ) ) ) ) |
| 13 |
8 12
|
bitri |
⊢ ( ( 𝑥 < ( abs ‘ 𝐷 ) ∧ 𝑥 ∈ ℕ0 ) ↔ ( 𝑥 ∈ ℤ ∧ ( 0 ≤ 𝑥 ∧ 𝑥 < ( abs ‘ 𝐷 ) ) ) ) |
| 14 |
13
|
anbi1i |
⊢ ( ( ( 𝑥 < ( abs ‘ 𝐷 ) ∧ 𝑥 ∈ ℕ0 ) ∧ ∃ 𝑞 ∈ ℤ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) ↔ ( ( 𝑥 ∈ ℤ ∧ ( 0 ≤ 𝑥 ∧ 𝑥 < ( abs ‘ 𝐷 ) ) ) ∧ ∃ 𝑞 ∈ ℤ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) ) |
| 15 |
|
anass |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ ( 0 ≤ 𝑥 ∧ 𝑥 < ( abs ‘ 𝐷 ) ) ) ∧ ∃ 𝑞 ∈ ℤ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) ↔ ( 𝑥 ∈ ℤ ∧ ( ( 0 ≤ 𝑥 ∧ 𝑥 < ( abs ‘ 𝐷 ) ) ∧ ∃ 𝑞 ∈ ℤ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) ) ) |
| 16 |
14 15
|
bitri |
⊢ ( ( ( 𝑥 < ( abs ‘ 𝐷 ) ∧ 𝑥 ∈ ℕ0 ) ∧ ∃ 𝑞 ∈ ℤ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) ↔ ( 𝑥 ∈ ℤ ∧ ( ( 0 ≤ 𝑥 ∧ 𝑥 < ( abs ‘ 𝐷 ) ) ∧ ∃ 𝑞 ∈ ℤ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) ) ) |
| 17 |
|
oveq2 |
⊢ ( 𝑟 = 𝑥 → ( ( 𝑞 · 𝐷 ) + 𝑟 ) = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) |
| 18 |
17
|
eqeq2d |
⊢ ( 𝑟 = 𝑥 → ( 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑟 ) ↔ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) ) |
| 19 |
18
|
rexbidv |
⊢ ( 𝑟 = 𝑥 → ( ∃ 𝑞 ∈ ℤ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑟 ) ↔ ∃ 𝑞 ∈ ℤ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) ) |
| 20 |
1 2 3 4
|
divalglem4 |
⊢ 𝑆 = { 𝑟 ∈ ℕ0 ∣ ∃ 𝑞 ∈ ℤ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑟 ) } |
| 21 |
19 20
|
elrab2 |
⊢ ( 𝑥 ∈ 𝑆 ↔ ( 𝑥 ∈ ℕ0 ∧ ∃ 𝑞 ∈ ℤ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) ) |
| 22 |
21
|
anbi2i |
⊢ ( ( 𝑥 < ( abs ‘ 𝐷 ) ∧ 𝑥 ∈ 𝑆 ) ↔ ( 𝑥 < ( abs ‘ 𝐷 ) ∧ ( 𝑥 ∈ ℕ0 ∧ ∃ 𝑞 ∈ ℤ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) ) ) |
| 23 |
|
ancom |
⊢ ( ( 𝑥 ∈ 𝑆 ∧ 𝑥 < ( abs ‘ 𝐷 ) ) ↔ ( 𝑥 < ( abs ‘ 𝐷 ) ∧ 𝑥 ∈ 𝑆 ) ) |
| 24 |
|
anass |
⊢ ( ( ( 𝑥 < ( abs ‘ 𝐷 ) ∧ 𝑥 ∈ ℕ0 ) ∧ ∃ 𝑞 ∈ ℤ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) ↔ ( 𝑥 < ( abs ‘ 𝐷 ) ∧ ( 𝑥 ∈ ℕ0 ∧ ∃ 𝑞 ∈ ℤ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) ) ) |
| 25 |
22 23 24
|
3bitr4i |
⊢ ( ( 𝑥 ∈ 𝑆 ∧ 𝑥 < ( abs ‘ 𝐷 ) ) ↔ ( ( 𝑥 < ( abs ‘ 𝐷 ) ∧ 𝑥 ∈ ℕ0 ) ∧ ∃ 𝑞 ∈ ℤ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) ) |
| 26 |
|
df-3an |
⊢ ( ( 0 ≤ 𝑥 ∧ 𝑥 < ( abs ‘ 𝐷 ) ∧ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) ↔ ( ( 0 ≤ 𝑥 ∧ 𝑥 < ( abs ‘ 𝐷 ) ) ∧ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) ) |
| 27 |
26
|
rexbii |
⊢ ( ∃ 𝑞 ∈ ℤ ( 0 ≤ 𝑥 ∧ 𝑥 < ( abs ‘ 𝐷 ) ∧ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) ↔ ∃ 𝑞 ∈ ℤ ( ( 0 ≤ 𝑥 ∧ 𝑥 < ( abs ‘ 𝐷 ) ) ∧ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) ) |
| 28 |
|
r19.42v |
⊢ ( ∃ 𝑞 ∈ ℤ ( ( 0 ≤ 𝑥 ∧ 𝑥 < ( abs ‘ 𝐷 ) ) ∧ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) ↔ ( ( 0 ≤ 𝑥 ∧ 𝑥 < ( abs ‘ 𝐷 ) ) ∧ ∃ 𝑞 ∈ ℤ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) ) |
| 29 |
27 28
|
bitri |
⊢ ( ∃ 𝑞 ∈ ℤ ( 0 ≤ 𝑥 ∧ 𝑥 < ( abs ‘ 𝐷 ) ∧ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) ↔ ( ( 0 ≤ 𝑥 ∧ 𝑥 < ( abs ‘ 𝐷 ) ) ∧ ∃ 𝑞 ∈ ℤ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) ) |
| 30 |
29
|
anbi2i |
⊢ ( ( 𝑥 ∈ ℤ ∧ ∃ 𝑞 ∈ ℤ ( 0 ≤ 𝑥 ∧ 𝑥 < ( abs ‘ 𝐷 ) ∧ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) ) ↔ ( 𝑥 ∈ ℤ ∧ ( ( 0 ≤ 𝑥 ∧ 𝑥 < ( abs ‘ 𝐷 ) ) ∧ ∃ 𝑞 ∈ ℤ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) ) ) |
| 31 |
16 25 30
|
3bitr4i |
⊢ ( ( 𝑥 ∈ 𝑆 ∧ 𝑥 < ( abs ‘ 𝐷 ) ) ↔ ( 𝑥 ∈ ℤ ∧ ∃ 𝑞 ∈ ℤ ( 0 ≤ 𝑥 ∧ 𝑥 < ( abs ‘ 𝐷 ) ∧ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) ) ) |
| 32 |
31
|
eubii |
⊢ ( ∃! 𝑥 ( 𝑥 ∈ 𝑆 ∧ 𝑥 < ( abs ‘ 𝐷 ) ) ↔ ∃! 𝑥 ( 𝑥 ∈ ℤ ∧ ∃ 𝑞 ∈ ℤ ( 0 ≤ 𝑥 ∧ 𝑥 < ( abs ‘ 𝐷 ) ∧ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) ) ) |
| 33 |
|
df-reu |
⊢ ( ∃! 𝑥 ∈ 𝑆 𝑥 < ( abs ‘ 𝐷 ) ↔ ∃! 𝑥 ( 𝑥 ∈ 𝑆 ∧ 𝑥 < ( abs ‘ 𝐷 ) ) ) |
| 34 |
|
df-reu |
⊢ ( ∃! 𝑥 ∈ ℤ ∃ 𝑞 ∈ ℤ ( 0 ≤ 𝑥 ∧ 𝑥 < ( abs ‘ 𝐷 ) ∧ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) ↔ ∃! 𝑥 ( 𝑥 ∈ ℤ ∧ ∃ 𝑞 ∈ ℤ ( 0 ≤ 𝑥 ∧ 𝑥 < ( abs ‘ 𝐷 ) ∧ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) ) ) |
| 35 |
32 33 34
|
3bitr4i |
⊢ ( ∃! 𝑥 ∈ 𝑆 𝑥 < ( abs ‘ 𝐷 ) ↔ ∃! 𝑥 ∈ ℤ ∃ 𝑞 ∈ ℤ ( 0 ≤ 𝑥 ∧ 𝑥 < ( abs ‘ 𝐷 ) ∧ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) ) |
| 36 |
6 35
|
mpbi |
⊢ ∃! 𝑥 ∈ ℤ ∃ 𝑞 ∈ ℤ ( 0 ≤ 𝑥 ∧ 𝑥 < ( abs ‘ 𝐷 ) ∧ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) |
| 37 |
|
breq2 |
⊢ ( 𝑥 = 𝑟 → ( 0 ≤ 𝑥 ↔ 0 ≤ 𝑟 ) ) |
| 38 |
|
breq1 |
⊢ ( 𝑥 = 𝑟 → ( 𝑥 < ( abs ‘ 𝐷 ) ↔ 𝑟 < ( abs ‘ 𝐷 ) ) ) |
| 39 |
|
oveq2 |
⊢ ( 𝑥 = 𝑟 → ( ( 𝑞 · 𝐷 ) + 𝑥 ) = ( ( 𝑞 · 𝐷 ) + 𝑟 ) ) |
| 40 |
39
|
eqeq2d |
⊢ ( 𝑥 = 𝑟 → ( 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ↔ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑟 ) ) ) |
| 41 |
37 38 40
|
3anbi123d |
⊢ ( 𝑥 = 𝑟 → ( ( 0 ≤ 𝑥 ∧ 𝑥 < ( abs ‘ 𝐷 ) ∧ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) ↔ ( 0 ≤ 𝑟 ∧ 𝑟 < ( abs ‘ 𝐷 ) ∧ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑟 ) ) ) ) |
| 42 |
41
|
rexbidv |
⊢ ( 𝑥 = 𝑟 → ( ∃ 𝑞 ∈ ℤ ( 0 ≤ 𝑥 ∧ 𝑥 < ( abs ‘ 𝐷 ) ∧ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) ↔ ∃ 𝑞 ∈ ℤ ( 0 ≤ 𝑟 ∧ 𝑟 < ( abs ‘ 𝐷 ) ∧ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑟 ) ) ) ) |
| 43 |
42
|
cbvreuvw |
⊢ ( ∃! 𝑥 ∈ ℤ ∃ 𝑞 ∈ ℤ ( 0 ≤ 𝑥 ∧ 𝑥 < ( abs ‘ 𝐷 ) ∧ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) ↔ ∃! 𝑟 ∈ ℤ ∃ 𝑞 ∈ ℤ ( 0 ≤ 𝑟 ∧ 𝑟 < ( abs ‘ 𝐷 ) ∧ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑟 ) ) ) |
| 44 |
36 43
|
mpbi |
⊢ ∃! 𝑟 ∈ ℤ ∃ 𝑞 ∈ ℤ ( 0 ≤ 𝑟 ∧ 𝑟 < ( abs ‘ 𝐷 ) ∧ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑟 ) ) |