| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-rab |
⊢ { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } = { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑥 ) } |
| 2 |
|
vex |
⊢ 𝑦 ∈ V |
| 3 |
|
vex |
⊢ 𝑥 ∈ V |
| 4 |
2 3
|
breldm |
⊢ ( 𝑦 𝑅 𝑥 → 𝑦 ∈ dom 𝑅 ) |
| 5 |
4
|
adantl |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑥 ) → 𝑦 ∈ dom 𝑅 ) |
| 6 |
5
|
abssi |
⊢ { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑥 ) } ⊆ dom 𝑅 |
| 7 |
1 6
|
eqsstri |
⊢ { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } ⊆ dom 𝑅 |
| 8 |
|
dmexg |
⊢ ( 𝑅 ∈ 𝑉 → dom 𝑅 ∈ V ) |
| 9 |
|
ssexg |
⊢ ( ( { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } ⊆ dom 𝑅 ∧ dom 𝑅 ∈ V ) → { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } ∈ V ) |
| 10 |
7 8 9
|
sylancr |
⊢ ( 𝑅 ∈ 𝑉 → { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } ∈ V ) |
| 11 |
10
|
ralrimivw |
⊢ ( 𝑅 ∈ 𝑉 → ∀ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } ∈ V ) |
| 12 |
|
df-se |
⊢ ( 𝑅 Se 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } ∈ V ) |
| 13 |
11 12
|
sylibr |
⊢ ( 𝑅 ∈ 𝑉 → 𝑅 Se 𝐴 ) |