Metamath Proof Explorer


Theorem exse2

Description: Any set relation is set-like. (Contributed by Mario Carneiro, 22-Jun-2015)

Ref Expression
Assertion exse2 ( 𝑅𝑉𝑅 Se 𝐴 )

Proof

Step Hyp Ref Expression
1 df-rab { 𝑦𝐴𝑦 𝑅 𝑥 } = { 𝑦 ∣ ( 𝑦𝐴𝑦 𝑅 𝑥 ) }
2 vex 𝑦 ∈ V
3 vex 𝑥 ∈ V
4 2 3 breldm ( 𝑦 𝑅 𝑥𝑦 ∈ dom 𝑅 )
5 4 adantl ( ( 𝑦𝐴𝑦 𝑅 𝑥 ) → 𝑦 ∈ dom 𝑅 )
6 5 abssi { 𝑦 ∣ ( 𝑦𝐴𝑦 𝑅 𝑥 ) } ⊆ dom 𝑅
7 1 6 eqsstri { 𝑦𝐴𝑦 𝑅 𝑥 } ⊆ dom 𝑅
8 dmexg ( 𝑅𝑉 → dom 𝑅 ∈ V )
9 ssexg ( ( { 𝑦𝐴𝑦 𝑅 𝑥 } ⊆ dom 𝑅 ∧ dom 𝑅 ∈ V ) → { 𝑦𝐴𝑦 𝑅 𝑥 } ∈ V )
10 7 8 9 sylancr ( 𝑅𝑉 → { 𝑦𝐴𝑦 𝑅 𝑥 } ∈ V )
11 10 ralrimivw ( 𝑅𝑉 → ∀ 𝑥𝐴 { 𝑦𝐴𝑦 𝑅 𝑥 } ∈ V )
12 df-se ( 𝑅 Se 𝐴 ↔ ∀ 𝑥𝐴 { 𝑦𝐴𝑦 𝑅 𝑥 } ∈ V )
13 11 12 sylibr ( 𝑅𝑉𝑅 Se 𝐴 )