Metamath Proof Explorer


Theorem exse2

Description: Any set relation is set-like. (Contributed by Mario Carneiro, 22-Jun-2015)

Ref Expression
Assertion exse2 RVRSeA

Proof

Step Hyp Ref Expression
1 df-rab yA|yRx=y|yAyRx
2 vex yV
3 vex xV
4 2 3 breldm yRxydomR
5 4 adantl yAyRxydomR
6 5 abssi y|yAyRxdomR
7 1 6 eqsstri yA|yRxdomR
8 dmexg RVdomRV
9 ssexg yA|yRxdomRdomRVyA|yRxV
10 7 8 9 sylancr RVyA|yRxV
11 10 ralrimivw RVxAyA|yRxV
12 df-se RSeAxAyA|yRxV
13 11 12 sylibr RVRSeA