Step |
Hyp |
Ref |
Expression |
1 |
|
fargshift.g |
⊢ 𝐺 = ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ↦ ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) |
2 |
|
fz0add1fz1 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑙 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑙 + 1 ) ∈ ( 1 ... 𝑁 ) ) |
3 |
|
simpl |
⊢ ( ( ( 𝑙 + 1 ) ∈ ( 1 ... 𝑁 ) ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑙 ∈ ( 0 ..^ 𝑁 ) ) ) → ( 𝑙 + 1 ) ∈ ( 1 ... 𝑁 ) ) |
4 |
3
|
adantr |
⊢ ( ( ( ( 𝑙 + 1 ) ∈ ( 1 ... 𝑁 ) ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑙 ∈ ( 0 ..^ 𝑁 ) ) ) ∧ 𝐹 : ( 1 ... 𝑁 ) ⟶ dom 𝐸 ) → ( 𝑙 + 1 ) ∈ ( 1 ... 𝑁 ) ) |
5 |
|
2fveq3 |
⊢ ( 𝑘 = ( 𝑙 + 1 ) → ( 𝐸 ‘ ( 𝐹 ‘ 𝑘 ) ) = ( 𝐸 ‘ ( 𝐹 ‘ ( 𝑙 + 1 ) ) ) ) |
6 |
|
csbeq1 |
⊢ ( 𝑘 = ( 𝑙 + 1 ) → ⦋ 𝑘 / 𝑥 ⦌ 𝑃 = ⦋ ( 𝑙 + 1 ) / 𝑥 ⦌ 𝑃 ) |
7 |
5 6
|
eqeq12d |
⊢ ( 𝑘 = ( 𝑙 + 1 ) → ( ( 𝐸 ‘ ( 𝐹 ‘ 𝑘 ) ) = ⦋ 𝑘 / 𝑥 ⦌ 𝑃 ↔ ( 𝐸 ‘ ( 𝐹 ‘ ( 𝑙 + 1 ) ) ) = ⦋ ( 𝑙 + 1 ) / 𝑥 ⦌ 𝑃 ) ) |
8 |
7
|
adantl |
⊢ ( ( ( ( ( 𝑙 + 1 ) ∈ ( 1 ... 𝑁 ) ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑙 ∈ ( 0 ..^ 𝑁 ) ) ) ∧ 𝐹 : ( 1 ... 𝑁 ) ⟶ dom 𝐸 ) ∧ 𝑘 = ( 𝑙 + 1 ) ) → ( ( 𝐸 ‘ ( 𝐹 ‘ 𝑘 ) ) = ⦋ 𝑘 / 𝑥 ⦌ 𝑃 ↔ ( 𝐸 ‘ ( 𝐹 ‘ ( 𝑙 + 1 ) ) ) = ⦋ ( 𝑙 + 1 ) / 𝑥 ⦌ 𝑃 ) ) |
9 |
|
simpl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑙 ∈ ( 0 ..^ 𝑁 ) ) → 𝑁 ∈ ℕ0 ) |
10 |
9
|
adantl |
⊢ ( ( ( 𝑙 + 1 ) ∈ ( 1 ... 𝑁 ) ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑙 ∈ ( 0 ..^ 𝑁 ) ) ) → 𝑁 ∈ ℕ0 ) |
11 |
10
|
anim1i |
⊢ ( ( ( ( 𝑙 + 1 ) ∈ ( 1 ... 𝑁 ) ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑙 ∈ ( 0 ..^ 𝑁 ) ) ) ∧ 𝐹 : ( 1 ... 𝑁 ) ⟶ dom 𝐸 ) → ( 𝑁 ∈ ℕ0 ∧ 𝐹 : ( 1 ... 𝑁 ) ⟶ dom 𝐸 ) ) |
12 |
11
|
adantr |
⊢ ( ( ( ( ( 𝑙 + 1 ) ∈ ( 1 ... 𝑁 ) ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑙 ∈ ( 0 ..^ 𝑁 ) ) ) ∧ 𝐹 : ( 1 ... 𝑁 ) ⟶ dom 𝐸 ) ∧ 𝑘 = ( 𝑙 + 1 ) ) → ( 𝑁 ∈ ℕ0 ∧ 𝐹 : ( 1 ... 𝑁 ) ⟶ dom 𝐸 ) ) |
13 |
|
simpr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑙 ∈ ( 0 ..^ 𝑁 ) ) → 𝑙 ∈ ( 0 ..^ 𝑁 ) ) |
14 |
13
|
ad3antlr |
⊢ ( ( ( ( ( 𝑙 + 1 ) ∈ ( 1 ... 𝑁 ) ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑙 ∈ ( 0 ..^ 𝑁 ) ) ) ∧ 𝐹 : ( 1 ... 𝑁 ) ⟶ dom 𝐸 ) ∧ 𝑘 = ( 𝑙 + 1 ) ) → 𝑙 ∈ ( 0 ..^ 𝑁 ) ) |
15 |
1
|
fargshiftfv |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐹 : ( 1 ... 𝑁 ) ⟶ dom 𝐸 ) → ( 𝑙 ∈ ( 0 ..^ 𝑁 ) → ( 𝐺 ‘ 𝑙 ) = ( 𝐹 ‘ ( 𝑙 + 1 ) ) ) ) |
16 |
15
|
imp |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐹 : ( 1 ... 𝑁 ) ⟶ dom 𝐸 ) ∧ 𝑙 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐺 ‘ 𝑙 ) = ( 𝐹 ‘ ( 𝑙 + 1 ) ) ) |
17 |
16
|
eqcomd |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐹 : ( 1 ... 𝑁 ) ⟶ dom 𝐸 ) ∧ 𝑙 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐹 ‘ ( 𝑙 + 1 ) ) = ( 𝐺 ‘ 𝑙 ) ) |
18 |
12 14 17
|
syl2anc |
⊢ ( ( ( ( ( 𝑙 + 1 ) ∈ ( 1 ... 𝑁 ) ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑙 ∈ ( 0 ..^ 𝑁 ) ) ) ∧ 𝐹 : ( 1 ... 𝑁 ) ⟶ dom 𝐸 ) ∧ 𝑘 = ( 𝑙 + 1 ) ) → ( 𝐹 ‘ ( 𝑙 + 1 ) ) = ( 𝐺 ‘ 𝑙 ) ) |
19 |
18
|
fveqeq2d |
⊢ ( ( ( ( ( 𝑙 + 1 ) ∈ ( 1 ... 𝑁 ) ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑙 ∈ ( 0 ..^ 𝑁 ) ) ) ∧ 𝐹 : ( 1 ... 𝑁 ) ⟶ dom 𝐸 ) ∧ 𝑘 = ( 𝑙 + 1 ) ) → ( ( 𝐸 ‘ ( 𝐹 ‘ ( 𝑙 + 1 ) ) ) = ⦋ ( 𝑙 + 1 ) / 𝑥 ⦌ 𝑃 ↔ ( 𝐸 ‘ ( 𝐺 ‘ 𝑙 ) ) = ⦋ ( 𝑙 + 1 ) / 𝑥 ⦌ 𝑃 ) ) |
20 |
8 19
|
bitrd |
⊢ ( ( ( ( ( 𝑙 + 1 ) ∈ ( 1 ... 𝑁 ) ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑙 ∈ ( 0 ..^ 𝑁 ) ) ) ∧ 𝐹 : ( 1 ... 𝑁 ) ⟶ dom 𝐸 ) ∧ 𝑘 = ( 𝑙 + 1 ) ) → ( ( 𝐸 ‘ ( 𝐹 ‘ 𝑘 ) ) = ⦋ 𝑘 / 𝑥 ⦌ 𝑃 ↔ ( 𝐸 ‘ ( 𝐺 ‘ 𝑙 ) ) = ⦋ ( 𝑙 + 1 ) / 𝑥 ⦌ 𝑃 ) ) |
21 |
4 20
|
rspcdv |
⊢ ( ( ( ( 𝑙 + 1 ) ∈ ( 1 ... 𝑁 ) ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑙 ∈ ( 0 ..^ 𝑁 ) ) ) ∧ 𝐹 : ( 1 ... 𝑁 ) ⟶ dom 𝐸 ) → ( ∀ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑘 ) ) = ⦋ 𝑘 / 𝑥 ⦌ 𝑃 → ( 𝐸 ‘ ( 𝐺 ‘ 𝑙 ) ) = ⦋ ( 𝑙 + 1 ) / 𝑥 ⦌ 𝑃 ) ) |
22 |
21
|
ex |
⊢ ( ( ( 𝑙 + 1 ) ∈ ( 1 ... 𝑁 ) ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑙 ∈ ( 0 ..^ 𝑁 ) ) ) → ( 𝐹 : ( 1 ... 𝑁 ) ⟶ dom 𝐸 → ( ∀ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑘 ) ) = ⦋ 𝑘 / 𝑥 ⦌ 𝑃 → ( 𝐸 ‘ ( 𝐺 ‘ 𝑙 ) ) = ⦋ ( 𝑙 + 1 ) / 𝑥 ⦌ 𝑃 ) ) ) |
23 |
22
|
com23 |
⊢ ( ( ( 𝑙 + 1 ) ∈ ( 1 ... 𝑁 ) ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑙 ∈ ( 0 ..^ 𝑁 ) ) ) → ( ∀ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑘 ) ) = ⦋ 𝑘 / 𝑥 ⦌ 𝑃 → ( 𝐹 : ( 1 ... 𝑁 ) ⟶ dom 𝐸 → ( 𝐸 ‘ ( 𝐺 ‘ 𝑙 ) ) = ⦋ ( 𝑙 + 1 ) / 𝑥 ⦌ 𝑃 ) ) ) |
24 |
2 23
|
mpancom |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑙 ∈ ( 0 ..^ 𝑁 ) ) → ( ∀ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑘 ) ) = ⦋ 𝑘 / 𝑥 ⦌ 𝑃 → ( 𝐹 : ( 1 ... 𝑁 ) ⟶ dom 𝐸 → ( 𝐸 ‘ ( 𝐺 ‘ 𝑙 ) ) = ⦋ ( 𝑙 + 1 ) / 𝑥 ⦌ 𝑃 ) ) ) |
25 |
24
|
ex |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑙 ∈ ( 0 ..^ 𝑁 ) → ( ∀ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑘 ) ) = ⦋ 𝑘 / 𝑥 ⦌ 𝑃 → ( 𝐹 : ( 1 ... 𝑁 ) ⟶ dom 𝐸 → ( 𝐸 ‘ ( 𝐺 ‘ 𝑙 ) ) = ⦋ ( 𝑙 + 1 ) / 𝑥 ⦌ 𝑃 ) ) ) ) |
26 |
25
|
com24 |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝐹 : ( 1 ... 𝑁 ) ⟶ dom 𝐸 → ( ∀ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑘 ) ) = ⦋ 𝑘 / 𝑥 ⦌ 𝑃 → ( 𝑙 ∈ ( 0 ..^ 𝑁 ) → ( 𝐸 ‘ ( 𝐺 ‘ 𝑙 ) ) = ⦋ ( 𝑙 + 1 ) / 𝑥 ⦌ 𝑃 ) ) ) ) |
27 |
26
|
imp31 |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐹 : ( 1 ... 𝑁 ) ⟶ dom 𝐸 ) ∧ ∀ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑘 ) ) = ⦋ 𝑘 / 𝑥 ⦌ 𝑃 ) → ( 𝑙 ∈ ( 0 ..^ 𝑁 ) → ( 𝐸 ‘ ( 𝐺 ‘ 𝑙 ) ) = ⦋ ( 𝑙 + 1 ) / 𝑥 ⦌ 𝑃 ) ) |
28 |
27
|
ralrimiv |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐹 : ( 1 ... 𝑁 ) ⟶ dom 𝐸 ) ∧ ∀ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑘 ) ) = ⦋ 𝑘 / 𝑥 ⦌ 𝑃 ) → ∀ 𝑙 ∈ ( 0 ..^ 𝑁 ) ( 𝐸 ‘ ( 𝐺 ‘ 𝑙 ) ) = ⦋ ( 𝑙 + 1 ) / 𝑥 ⦌ 𝑃 ) |
29 |
28
|
ex |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐹 : ( 1 ... 𝑁 ) ⟶ dom 𝐸 ) → ( ∀ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑘 ) ) = ⦋ 𝑘 / 𝑥 ⦌ 𝑃 → ∀ 𝑙 ∈ ( 0 ..^ 𝑁 ) ( 𝐸 ‘ ( 𝐺 ‘ 𝑙 ) ) = ⦋ ( 𝑙 + 1 ) / 𝑥 ⦌ 𝑃 ) ) |