Metamath Proof Explorer


Theorem fargshiftfva

Description: The values of a shifted function correspond to the value of the original function. (Contributed by Alexander van der Vekens, 24-Nov-2017)

Ref Expression
Hypothesis fargshift.g G = x 0 ..^ F F x + 1
Assertion fargshiftfva N 0 F : 1 N dom E k 1 N E F k = k / x P l 0 ..^ N E G l = l + 1 / x P

Proof

Step Hyp Ref Expression
1 fargshift.g G = x 0 ..^ F F x + 1
2 fz0add1fz1 N 0 l 0 ..^ N l + 1 1 N
3 simpl l + 1 1 N N 0 l 0 ..^ N l + 1 1 N
4 3 adantr l + 1 1 N N 0 l 0 ..^ N F : 1 N dom E l + 1 1 N
5 2fveq3 k = l + 1 E F k = E F l + 1
6 csbeq1 k = l + 1 k / x P = l + 1 / x P
7 5 6 eqeq12d k = l + 1 E F k = k / x P E F l + 1 = l + 1 / x P
8 7 adantl l + 1 1 N N 0 l 0 ..^ N F : 1 N dom E k = l + 1 E F k = k / x P E F l + 1 = l + 1 / x P
9 simpl N 0 l 0 ..^ N N 0
10 9 adantl l + 1 1 N N 0 l 0 ..^ N N 0
11 10 anim1i l + 1 1 N N 0 l 0 ..^ N F : 1 N dom E N 0 F : 1 N dom E
12 11 adantr l + 1 1 N N 0 l 0 ..^ N F : 1 N dom E k = l + 1 N 0 F : 1 N dom E
13 simpr N 0 l 0 ..^ N l 0 ..^ N
14 13 ad3antlr l + 1 1 N N 0 l 0 ..^ N F : 1 N dom E k = l + 1 l 0 ..^ N
15 1 fargshiftfv N 0 F : 1 N dom E l 0 ..^ N G l = F l + 1
16 15 imp N 0 F : 1 N dom E l 0 ..^ N G l = F l + 1
17 16 eqcomd N 0 F : 1 N dom E l 0 ..^ N F l + 1 = G l
18 12 14 17 syl2anc l + 1 1 N N 0 l 0 ..^ N F : 1 N dom E k = l + 1 F l + 1 = G l
19 18 fveqeq2d l + 1 1 N N 0 l 0 ..^ N F : 1 N dom E k = l + 1 E F l + 1 = l + 1 / x P E G l = l + 1 / x P
20 8 19 bitrd l + 1 1 N N 0 l 0 ..^ N F : 1 N dom E k = l + 1 E F k = k / x P E G l = l + 1 / x P
21 4 20 rspcdv l + 1 1 N N 0 l 0 ..^ N F : 1 N dom E k 1 N E F k = k / x P E G l = l + 1 / x P
22 21 ex l + 1 1 N N 0 l 0 ..^ N F : 1 N dom E k 1 N E F k = k / x P E G l = l + 1 / x P
23 22 com23 l + 1 1 N N 0 l 0 ..^ N k 1 N E F k = k / x P F : 1 N dom E E G l = l + 1 / x P
24 2 23 mpancom N 0 l 0 ..^ N k 1 N E F k = k / x P F : 1 N dom E E G l = l + 1 / x P
25 24 ex N 0 l 0 ..^ N k 1 N E F k = k / x P F : 1 N dom E E G l = l + 1 / x P
26 25 com24 N 0 F : 1 N dom E k 1 N E F k = k / x P l 0 ..^ N E G l = l + 1 / x P
27 26 imp31 N 0 F : 1 N dom E k 1 N E F k = k / x P l 0 ..^ N E G l = l + 1 / x P
28 27 ralrimiv N 0 F : 1 N dom E k 1 N E F k = k / x P l 0 ..^ N E G l = l + 1 / x P
29 28 ex N 0 F : 1 N dom E k 1 N E F k = k / x P l 0 ..^ N E G l = l + 1 / x P