Step |
Hyp |
Ref |
Expression |
1 |
|
fargshift.g |
|- G = ( x e. ( 0 ..^ ( # ` F ) ) |-> ( F ` ( x + 1 ) ) ) |
2 |
|
fz0add1fz1 |
|- ( ( N e. NN0 /\ l e. ( 0 ..^ N ) ) -> ( l + 1 ) e. ( 1 ... N ) ) |
3 |
|
simpl |
|- ( ( ( l + 1 ) e. ( 1 ... N ) /\ ( N e. NN0 /\ l e. ( 0 ..^ N ) ) ) -> ( l + 1 ) e. ( 1 ... N ) ) |
4 |
3
|
adantr |
|- ( ( ( ( l + 1 ) e. ( 1 ... N ) /\ ( N e. NN0 /\ l e. ( 0 ..^ N ) ) ) /\ F : ( 1 ... N ) --> dom E ) -> ( l + 1 ) e. ( 1 ... N ) ) |
5 |
|
2fveq3 |
|- ( k = ( l + 1 ) -> ( E ` ( F ` k ) ) = ( E ` ( F ` ( l + 1 ) ) ) ) |
6 |
|
csbeq1 |
|- ( k = ( l + 1 ) -> [_ k / x ]_ P = [_ ( l + 1 ) / x ]_ P ) |
7 |
5 6
|
eqeq12d |
|- ( k = ( l + 1 ) -> ( ( E ` ( F ` k ) ) = [_ k / x ]_ P <-> ( E ` ( F ` ( l + 1 ) ) ) = [_ ( l + 1 ) / x ]_ P ) ) |
8 |
7
|
adantl |
|- ( ( ( ( ( l + 1 ) e. ( 1 ... N ) /\ ( N e. NN0 /\ l e. ( 0 ..^ N ) ) ) /\ F : ( 1 ... N ) --> dom E ) /\ k = ( l + 1 ) ) -> ( ( E ` ( F ` k ) ) = [_ k / x ]_ P <-> ( E ` ( F ` ( l + 1 ) ) ) = [_ ( l + 1 ) / x ]_ P ) ) |
9 |
|
simpl |
|- ( ( N e. NN0 /\ l e. ( 0 ..^ N ) ) -> N e. NN0 ) |
10 |
9
|
adantl |
|- ( ( ( l + 1 ) e. ( 1 ... N ) /\ ( N e. NN0 /\ l e. ( 0 ..^ N ) ) ) -> N e. NN0 ) |
11 |
10
|
anim1i |
|- ( ( ( ( l + 1 ) e. ( 1 ... N ) /\ ( N e. NN0 /\ l e. ( 0 ..^ N ) ) ) /\ F : ( 1 ... N ) --> dom E ) -> ( N e. NN0 /\ F : ( 1 ... N ) --> dom E ) ) |
12 |
11
|
adantr |
|- ( ( ( ( ( l + 1 ) e. ( 1 ... N ) /\ ( N e. NN0 /\ l e. ( 0 ..^ N ) ) ) /\ F : ( 1 ... N ) --> dom E ) /\ k = ( l + 1 ) ) -> ( N e. NN0 /\ F : ( 1 ... N ) --> dom E ) ) |
13 |
|
simpr |
|- ( ( N e. NN0 /\ l e. ( 0 ..^ N ) ) -> l e. ( 0 ..^ N ) ) |
14 |
13
|
ad3antlr |
|- ( ( ( ( ( l + 1 ) e. ( 1 ... N ) /\ ( N e. NN0 /\ l e. ( 0 ..^ N ) ) ) /\ F : ( 1 ... N ) --> dom E ) /\ k = ( l + 1 ) ) -> l e. ( 0 ..^ N ) ) |
15 |
1
|
fargshiftfv |
|- ( ( N e. NN0 /\ F : ( 1 ... N ) --> dom E ) -> ( l e. ( 0 ..^ N ) -> ( G ` l ) = ( F ` ( l + 1 ) ) ) ) |
16 |
15
|
imp |
|- ( ( ( N e. NN0 /\ F : ( 1 ... N ) --> dom E ) /\ l e. ( 0 ..^ N ) ) -> ( G ` l ) = ( F ` ( l + 1 ) ) ) |
17 |
16
|
eqcomd |
|- ( ( ( N e. NN0 /\ F : ( 1 ... N ) --> dom E ) /\ l e. ( 0 ..^ N ) ) -> ( F ` ( l + 1 ) ) = ( G ` l ) ) |
18 |
12 14 17
|
syl2anc |
|- ( ( ( ( ( l + 1 ) e. ( 1 ... N ) /\ ( N e. NN0 /\ l e. ( 0 ..^ N ) ) ) /\ F : ( 1 ... N ) --> dom E ) /\ k = ( l + 1 ) ) -> ( F ` ( l + 1 ) ) = ( G ` l ) ) |
19 |
18
|
fveqeq2d |
|- ( ( ( ( ( l + 1 ) e. ( 1 ... N ) /\ ( N e. NN0 /\ l e. ( 0 ..^ N ) ) ) /\ F : ( 1 ... N ) --> dom E ) /\ k = ( l + 1 ) ) -> ( ( E ` ( F ` ( l + 1 ) ) ) = [_ ( l + 1 ) / x ]_ P <-> ( E ` ( G ` l ) ) = [_ ( l + 1 ) / x ]_ P ) ) |
20 |
8 19
|
bitrd |
|- ( ( ( ( ( l + 1 ) e. ( 1 ... N ) /\ ( N e. NN0 /\ l e. ( 0 ..^ N ) ) ) /\ F : ( 1 ... N ) --> dom E ) /\ k = ( l + 1 ) ) -> ( ( E ` ( F ` k ) ) = [_ k / x ]_ P <-> ( E ` ( G ` l ) ) = [_ ( l + 1 ) / x ]_ P ) ) |
21 |
4 20
|
rspcdv |
|- ( ( ( ( l + 1 ) e. ( 1 ... N ) /\ ( N e. NN0 /\ l e. ( 0 ..^ N ) ) ) /\ F : ( 1 ... N ) --> dom E ) -> ( A. k e. ( 1 ... N ) ( E ` ( F ` k ) ) = [_ k / x ]_ P -> ( E ` ( G ` l ) ) = [_ ( l + 1 ) / x ]_ P ) ) |
22 |
21
|
ex |
|- ( ( ( l + 1 ) e. ( 1 ... N ) /\ ( N e. NN0 /\ l e. ( 0 ..^ N ) ) ) -> ( F : ( 1 ... N ) --> dom E -> ( A. k e. ( 1 ... N ) ( E ` ( F ` k ) ) = [_ k / x ]_ P -> ( E ` ( G ` l ) ) = [_ ( l + 1 ) / x ]_ P ) ) ) |
23 |
22
|
com23 |
|- ( ( ( l + 1 ) e. ( 1 ... N ) /\ ( N e. NN0 /\ l e. ( 0 ..^ N ) ) ) -> ( A. k e. ( 1 ... N ) ( E ` ( F ` k ) ) = [_ k / x ]_ P -> ( F : ( 1 ... N ) --> dom E -> ( E ` ( G ` l ) ) = [_ ( l + 1 ) / x ]_ P ) ) ) |
24 |
2 23
|
mpancom |
|- ( ( N e. NN0 /\ l e. ( 0 ..^ N ) ) -> ( A. k e. ( 1 ... N ) ( E ` ( F ` k ) ) = [_ k / x ]_ P -> ( F : ( 1 ... N ) --> dom E -> ( E ` ( G ` l ) ) = [_ ( l + 1 ) / x ]_ P ) ) ) |
25 |
24
|
ex |
|- ( N e. NN0 -> ( l e. ( 0 ..^ N ) -> ( A. k e. ( 1 ... N ) ( E ` ( F ` k ) ) = [_ k / x ]_ P -> ( F : ( 1 ... N ) --> dom E -> ( E ` ( G ` l ) ) = [_ ( l + 1 ) / x ]_ P ) ) ) ) |
26 |
25
|
com24 |
|- ( N e. NN0 -> ( F : ( 1 ... N ) --> dom E -> ( A. k e. ( 1 ... N ) ( E ` ( F ` k ) ) = [_ k / x ]_ P -> ( l e. ( 0 ..^ N ) -> ( E ` ( G ` l ) ) = [_ ( l + 1 ) / x ]_ P ) ) ) ) |
27 |
26
|
imp31 |
|- ( ( ( N e. NN0 /\ F : ( 1 ... N ) --> dom E ) /\ A. k e. ( 1 ... N ) ( E ` ( F ` k ) ) = [_ k / x ]_ P ) -> ( l e. ( 0 ..^ N ) -> ( E ` ( G ` l ) ) = [_ ( l + 1 ) / x ]_ P ) ) |
28 |
27
|
ralrimiv |
|- ( ( ( N e. NN0 /\ F : ( 1 ... N ) --> dom E ) /\ A. k e. ( 1 ... N ) ( E ` ( F ` k ) ) = [_ k / x ]_ P ) -> A. l e. ( 0 ..^ N ) ( E ` ( G ` l ) ) = [_ ( l + 1 ) / x ]_ P ) |
29 |
28
|
ex |
|- ( ( N e. NN0 /\ F : ( 1 ... N ) --> dom E ) -> ( A. k e. ( 1 ... N ) ( E ` ( F ` k ) ) = [_ k / x ]_ P -> A. l e. ( 0 ..^ N ) ( E ` ( G ` l ) ) = [_ ( l + 1 ) / x ]_ P ) ) |