Step |
Hyp |
Ref |
Expression |
1 |
|
flfcnp2.j |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
2 |
|
flfcnp2.k |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
3 |
|
flfcnp2.l |
⊢ ( 𝜑 → 𝐿 ∈ ( Fil ‘ 𝑍 ) ) |
4 |
|
flfcnp2.a |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 𝐴 ∈ 𝑋 ) |
5 |
|
flfcnp2.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 𝐵 ∈ 𝑌 ) |
6 |
|
flfcnp2.r |
⊢ ( 𝜑 → 𝑅 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ) ) |
7 |
|
flfcnp2.s |
⊢ ( 𝜑 → 𝑆 ∈ ( ( 𝐾 fLimf 𝐿 ) ‘ ( 𝑥 ∈ 𝑍 ↦ 𝐵 ) ) ) |
8 |
|
flfcnp2.o |
⊢ ( 𝜑 → 𝑂 ∈ ( ( ( 𝐽 ×t 𝐾 ) CnP 𝑁 ) ‘ 〈 𝑅 , 𝑆 〉 ) ) |
9 |
|
df-ov |
⊢ ( 𝑅 𝑂 𝑆 ) = ( 𝑂 ‘ 〈 𝑅 , 𝑆 〉 ) |
10 |
|
txtopon |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) |
11 |
1 2 10
|
syl2anc |
⊢ ( 𝜑 → ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) |
12 |
4 5
|
opelxpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 〈 𝐴 , 𝐵 〉 ∈ ( 𝑋 × 𝑌 ) ) |
13 |
12
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑍 ↦ 〈 𝐴 , 𝐵 〉 ) : 𝑍 ⟶ ( 𝑋 × 𝑌 ) ) |
14 |
4
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) : 𝑍 ⟶ 𝑋 ) |
15 |
5
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑍 ↦ 𝐵 ) : 𝑍 ⟶ 𝑌 ) |
16 |
|
nfcv |
⊢ Ⅎ 𝑦 〈 ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑥 ) 〉 |
17 |
|
nffvmpt1 |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑦 ) |
18 |
|
nffvmpt1 |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑦 ) |
19 |
17 18
|
nfop |
⊢ Ⅎ 𝑥 〈 ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑦 ) , ( ( 𝑥 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑦 ) 〉 |
20 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑦 ) ) |
21 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑦 ) ) |
22 |
20 21
|
opeq12d |
⊢ ( 𝑥 = 𝑦 → 〈 ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑥 ) 〉 = 〈 ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑦 ) , ( ( 𝑥 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑦 ) 〉 ) |
23 |
16 19 22
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝑍 ↦ 〈 ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑥 ) 〉 ) = ( 𝑦 ∈ 𝑍 ↦ 〈 ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑦 ) , ( ( 𝑥 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑦 ) 〉 ) |
24 |
1 2 3 14 15 23
|
txflf |
⊢ ( 𝜑 → ( 〈 𝑅 , 𝑆 〉 ∈ ( ( ( 𝐽 ×t 𝐾 ) fLimf 𝐿 ) ‘ ( 𝑥 ∈ 𝑍 ↦ 〈 ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑥 ) 〉 ) ) ↔ ( 𝑅 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ) ∧ 𝑆 ∈ ( ( 𝐾 fLimf 𝐿 ) ‘ ( 𝑥 ∈ 𝑍 ↦ 𝐵 ) ) ) ) ) |
25 |
6 7 24
|
mpbir2and |
⊢ ( 𝜑 → 〈 𝑅 , 𝑆 〉 ∈ ( ( ( 𝐽 ×t 𝐾 ) fLimf 𝐿 ) ‘ ( 𝑥 ∈ 𝑍 ↦ 〈 ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑥 ) 〉 ) ) ) |
26 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 𝑥 ∈ 𝑍 ) |
27 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) = ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) |
28 |
27
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑥 ) = 𝐴 ) |
29 |
26 4 28
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑥 ) = 𝐴 ) |
30 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑍 ↦ 𝐵 ) = ( 𝑥 ∈ 𝑍 ↦ 𝐵 ) |
31 |
30
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝑍 ∧ 𝐵 ∈ 𝑌 ) → ( ( 𝑥 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
32 |
26 5 31
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → ( ( 𝑥 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
33 |
29 32
|
opeq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 〈 ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑥 ) 〉 = 〈 𝐴 , 𝐵 〉 ) |
34 |
33
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑍 ↦ 〈 ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑥 ) 〉 ) = ( 𝑥 ∈ 𝑍 ↦ 〈 𝐴 , 𝐵 〉 ) ) |
35 |
34
|
fveq2d |
⊢ ( 𝜑 → ( ( ( 𝐽 ×t 𝐾 ) fLimf 𝐿 ) ‘ ( 𝑥 ∈ 𝑍 ↦ 〈 ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑥 ) 〉 ) ) = ( ( ( 𝐽 ×t 𝐾 ) fLimf 𝐿 ) ‘ ( 𝑥 ∈ 𝑍 ↦ 〈 𝐴 , 𝐵 〉 ) ) ) |
36 |
25 35
|
eleqtrd |
⊢ ( 𝜑 → 〈 𝑅 , 𝑆 〉 ∈ ( ( ( 𝐽 ×t 𝐾 ) fLimf 𝐿 ) ‘ ( 𝑥 ∈ 𝑍 ↦ 〈 𝐴 , 𝐵 〉 ) ) ) |
37 |
|
flfcnp |
⊢ ( ( ( ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ∧ 𝐿 ∈ ( Fil ‘ 𝑍 ) ∧ ( 𝑥 ∈ 𝑍 ↦ 〈 𝐴 , 𝐵 〉 ) : 𝑍 ⟶ ( 𝑋 × 𝑌 ) ) ∧ ( 〈 𝑅 , 𝑆 〉 ∈ ( ( ( 𝐽 ×t 𝐾 ) fLimf 𝐿 ) ‘ ( 𝑥 ∈ 𝑍 ↦ 〈 𝐴 , 𝐵 〉 ) ) ∧ 𝑂 ∈ ( ( ( 𝐽 ×t 𝐾 ) CnP 𝑁 ) ‘ 〈 𝑅 , 𝑆 〉 ) ) ) → ( 𝑂 ‘ 〈 𝑅 , 𝑆 〉 ) ∈ ( ( 𝑁 fLimf 𝐿 ) ‘ ( 𝑂 ∘ ( 𝑥 ∈ 𝑍 ↦ 〈 𝐴 , 𝐵 〉 ) ) ) ) |
38 |
11 3 13 36 8 37
|
syl32anc |
⊢ ( 𝜑 → ( 𝑂 ‘ 〈 𝑅 , 𝑆 〉 ) ∈ ( ( 𝑁 fLimf 𝐿 ) ‘ ( 𝑂 ∘ ( 𝑥 ∈ 𝑍 ↦ 〈 𝐴 , 𝐵 〉 ) ) ) ) |
39 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑍 ↦ 〈 𝐴 , 𝐵 〉 ) = ( 𝑥 ∈ 𝑍 ↦ 〈 𝐴 , 𝐵 〉 ) ) |
40 |
|
cnptop2 |
⊢ ( 𝑂 ∈ ( ( ( 𝐽 ×t 𝐾 ) CnP 𝑁 ) ‘ 〈 𝑅 , 𝑆 〉 ) → 𝑁 ∈ Top ) |
41 |
8 40
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ Top ) |
42 |
|
toptopon2 |
⊢ ( 𝑁 ∈ Top ↔ 𝑁 ∈ ( TopOn ‘ ∪ 𝑁 ) ) |
43 |
41 42
|
sylib |
⊢ ( 𝜑 → 𝑁 ∈ ( TopOn ‘ ∪ 𝑁 ) ) |
44 |
|
cnpf2 |
⊢ ( ( ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ∧ 𝑁 ∈ ( TopOn ‘ ∪ 𝑁 ) ∧ 𝑂 ∈ ( ( ( 𝐽 ×t 𝐾 ) CnP 𝑁 ) ‘ 〈 𝑅 , 𝑆 〉 ) ) → 𝑂 : ( 𝑋 × 𝑌 ) ⟶ ∪ 𝑁 ) |
45 |
11 43 8 44
|
syl3anc |
⊢ ( 𝜑 → 𝑂 : ( 𝑋 × 𝑌 ) ⟶ ∪ 𝑁 ) |
46 |
45
|
feqmptd |
⊢ ( 𝜑 → 𝑂 = ( 𝑦 ∈ ( 𝑋 × 𝑌 ) ↦ ( 𝑂 ‘ 𝑦 ) ) ) |
47 |
|
fveq2 |
⊢ ( 𝑦 = 〈 𝐴 , 𝐵 〉 → ( 𝑂 ‘ 𝑦 ) = ( 𝑂 ‘ 〈 𝐴 , 𝐵 〉 ) ) |
48 |
|
df-ov |
⊢ ( 𝐴 𝑂 𝐵 ) = ( 𝑂 ‘ 〈 𝐴 , 𝐵 〉 ) |
49 |
47 48
|
eqtr4di |
⊢ ( 𝑦 = 〈 𝐴 , 𝐵 〉 → ( 𝑂 ‘ 𝑦 ) = ( 𝐴 𝑂 𝐵 ) ) |
50 |
12 39 46 49
|
fmptco |
⊢ ( 𝜑 → ( 𝑂 ∘ ( 𝑥 ∈ 𝑍 ↦ 〈 𝐴 , 𝐵 〉 ) ) = ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 𝑂 𝐵 ) ) ) |
51 |
50
|
fveq2d |
⊢ ( 𝜑 → ( ( 𝑁 fLimf 𝐿 ) ‘ ( 𝑂 ∘ ( 𝑥 ∈ 𝑍 ↦ 〈 𝐴 , 𝐵 〉 ) ) ) = ( ( 𝑁 fLimf 𝐿 ) ‘ ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 𝑂 𝐵 ) ) ) ) |
52 |
38 51
|
eleqtrd |
⊢ ( 𝜑 → ( 𝑂 ‘ 〈 𝑅 , 𝑆 〉 ) ∈ ( ( 𝑁 fLimf 𝐿 ) ‘ ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 𝑂 𝐵 ) ) ) ) |
53 |
9 52
|
eqeltrid |
⊢ ( 𝜑 → ( 𝑅 𝑂 𝑆 ) ∈ ( ( 𝑁 fLimf 𝐿 ) ‘ ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 𝑂 𝐵 ) ) ) ) |