| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmcau.1 |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
| 2 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 3 |
2
|
flimfil |
⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → 𝐹 ∈ ( Fil ‘ ∪ 𝐽 ) ) |
| 4 |
3
|
adantl |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) → 𝐹 ∈ ( Fil ‘ ∪ 𝐽 ) ) |
| 5 |
1
|
mopnuni |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 6 |
5
|
adantr |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) → 𝑋 = ∪ 𝐽 ) |
| 7 |
6
|
fveq2d |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) → ( Fil ‘ 𝑋 ) = ( Fil ‘ ∪ 𝐽 ) ) |
| 8 |
4 7
|
eleqtrrd |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
| 9 |
2
|
flimelbas |
⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → 𝐴 ∈ ∪ 𝐽 ) |
| 10 |
9
|
ad2antlr |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑥 ∈ ℝ+ ) → 𝐴 ∈ ∪ 𝐽 ) |
| 11 |
5
|
ad2antrr |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑥 ∈ ℝ+ ) → 𝑋 = ∪ 𝐽 ) |
| 12 |
10 11
|
eleqtrrd |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑥 ∈ ℝ+ ) → 𝐴 ∈ 𝑋 ) |
| 13 |
|
simplr |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑥 ∈ ℝ+ ) → 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) |
| 14 |
1
|
mopntop |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Top ) |
| 15 |
14
|
ad2antrr |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑥 ∈ ℝ+ ) → 𝐽 ∈ Top ) |
| 16 |
|
simpll |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑥 ∈ ℝ+ ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 17 |
|
rpxr |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ* ) |
| 18 |
17
|
adantl |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ* ) |
| 19 |
1
|
blopn |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝑥 ∈ ℝ* ) → ( 𝐴 ( ball ‘ 𝐷 ) 𝑥 ) ∈ 𝐽 ) |
| 20 |
16 12 18 19
|
syl3anc |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝐴 ( ball ‘ 𝐷 ) 𝑥 ) ∈ 𝐽 ) |
| 21 |
|
simpr |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ+ ) |
| 22 |
|
blcntr |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝑥 ∈ ℝ+ ) → 𝐴 ∈ ( 𝐴 ( ball ‘ 𝐷 ) 𝑥 ) ) |
| 23 |
16 12 21 22
|
syl3anc |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑥 ∈ ℝ+ ) → 𝐴 ∈ ( 𝐴 ( ball ‘ 𝐷 ) 𝑥 ) ) |
| 24 |
|
opnneip |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐴 ( ball ‘ 𝐷 ) 𝑥 ) ∈ 𝐽 ∧ 𝐴 ∈ ( 𝐴 ( ball ‘ 𝐷 ) 𝑥 ) ) → ( 𝐴 ( ball ‘ 𝐷 ) 𝑥 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) |
| 25 |
15 20 23 24
|
syl3anc |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝐴 ( ball ‘ 𝐷 ) 𝑥 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) |
| 26 |
|
flimnei |
⊢ ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ ( 𝐴 ( ball ‘ 𝐷 ) 𝑥 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → ( 𝐴 ( ball ‘ 𝐷 ) 𝑥 ) ∈ 𝐹 ) |
| 27 |
13 25 26
|
syl2anc |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝐴 ( ball ‘ 𝐷 ) 𝑥 ) ∈ 𝐹 ) |
| 28 |
|
oveq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 ) = ( 𝐴 ( ball ‘ 𝐷 ) 𝑥 ) ) |
| 29 |
28
|
eleq1d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 ) ∈ 𝐹 ↔ ( 𝐴 ( ball ‘ 𝐷 ) 𝑥 ) ∈ 𝐹 ) ) |
| 30 |
29
|
rspcev |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ ( 𝐴 ( ball ‘ 𝐷 ) 𝑥 ) ∈ 𝐹 ) → ∃ 𝑦 ∈ 𝑋 ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 ) ∈ 𝐹 ) |
| 31 |
12 27 30
|
syl2anc |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ 𝑋 ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 ) ∈ 𝐹 ) |
| 32 |
31
|
ralrimiva |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝑋 ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 ) ∈ 𝐹 ) |
| 33 |
|
iscfil3 |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ↔ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝑋 ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 ) ∈ 𝐹 ) ) ) |
| 34 |
33
|
adantr |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) → ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ↔ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝑋 ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 ) ∈ 𝐹 ) ) ) |
| 35 |
8 32 34
|
mpbir2and |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) → 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) |