Metamath Proof Explorer


Theorem frpoind

Description: The principle of well-founded induction over a partial order. This theorem is a version of frind that does not require the axiom of infinity and can be used to prove wfi and tfi . (Contributed by Scott Fenton, 11-Feb-2022)

Ref Expression
Assertion frpoind ( ( ( 𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴 ) ∧ ( 𝐵𝐴 ∧ ∀ 𝑦𝐴 ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵𝑦𝐵 ) ) ) → 𝐴 = 𝐵 )

Proof

Step Hyp Ref Expression
1 ssdif0 ( 𝐴𝐵 ↔ ( 𝐴𝐵 ) = ∅ )
2 1 necon3bbii ( ¬ 𝐴𝐵 ↔ ( 𝐴𝐵 ) ≠ ∅ )
3 difss ( 𝐴𝐵 ) ⊆ 𝐴
4 frpomin2 ( ( ( 𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴 ) ∧ ( ( 𝐴𝐵 ) ⊆ 𝐴 ∧ ( 𝐴𝐵 ) ≠ ∅ ) ) → ∃ 𝑦 ∈ ( 𝐴𝐵 ) Pred ( 𝑅 , ( 𝐴𝐵 ) , 𝑦 ) = ∅ )
5 eldif ( 𝑦 ∈ ( 𝐴𝐵 ) ↔ ( 𝑦𝐴 ∧ ¬ 𝑦𝐵 ) )
6 5 anbi1i ( ( 𝑦 ∈ ( 𝐴𝐵 ) ∧ Pred ( 𝑅 , ( 𝐴𝐵 ) , 𝑦 ) = ∅ ) ↔ ( ( 𝑦𝐴 ∧ ¬ 𝑦𝐵 ) ∧ Pred ( 𝑅 , ( 𝐴𝐵 ) , 𝑦 ) = ∅ ) )
7 anass ( ( ( 𝑦𝐴 ∧ ¬ 𝑦𝐵 ) ∧ Pred ( 𝑅 , ( 𝐴𝐵 ) , 𝑦 ) = ∅ ) ↔ ( 𝑦𝐴 ∧ ( ¬ 𝑦𝐵 ∧ Pred ( 𝑅 , ( 𝐴𝐵 ) , 𝑦 ) = ∅ ) ) )
8 indif2 ( ( 𝑅 “ { 𝑦 } ) ∩ ( 𝐴𝐵 ) ) = ( ( ( 𝑅 “ { 𝑦 } ) ∩ 𝐴 ) ∖ 𝐵 )
9 df-pred Pred ( 𝑅 , ( 𝐴𝐵 ) , 𝑦 ) = ( ( 𝐴𝐵 ) ∩ ( 𝑅 “ { 𝑦 } ) )
10 incom ( ( 𝐴𝐵 ) ∩ ( 𝑅 “ { 𝑦 } ) ) = ( ( 𝑅 “ { 𝑦 } ) ∩ ( 𝐴𝐵 ) )
11 9 10 eqtri Pred ( 𝑅 , ( 𝐴𝐵 ) , 𝑦 ) = ( ( 𝑅 “ { 𝑦 } ) ∩ ( 𝐴𝐵 ) )
12 df-pred Pred ( 𝑅 , 𝐴 , 𝑦 ) = ( 𝐴 ∩ ( 𝑅 “ { 𝑦 } ) )
13 incom ( 𝐴 ∩ ( 𝑅 “ { 𝑦 } ) ) = ( ( 𝑅 “ { 𝑦 } ) ∩ 𝐴 )
14 12 13 eqtri Pred ( 𝑅 , 𝐴 , 𝑦 ) = ( ( 𝑅 “ { 𝑦 } ) ∩ 𝐴 )
15 14 difeq1i ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ∖ 𝐵 ) = ( ( ( 𝑅 “ { 𝑦 } ) ∩ 𝐴 ) ∖ 𝐵 )
16 8 11 15 3eqtr4i Pred ( 𝑅 , ( 𝐴𝐵 ) , 𝑦 ) = ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ∖ 𝐵 )
17 16 eqeq1i ( Pred ( 𝑅 , ( 𝐴𝐵 ) , 𝑦 ) = ∅ ↔ ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ∖ 𝐵 ) = ∅ )
18 ssdif0 ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ↔ ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ∖ 𝐵 ) = ∅ )
19 17 18 bitr4i ( Pred ( 𝑅 , ( 𝐴𝐵 ) , 𝑦 ) = ∅ ↔ Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 )
20 19 anbi1ci ( ( ¬ 𝑦𝐵 ∧ Pred ( 𝑅 , ( 𝐴𝐵 ) , 𝑦 ) = ∅ ) ↔ ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ∧ ¬ 𝑦𝐵 ) )
21 20 anbi2i ( ( 𝑦𝐴 ∧ ( ¬ 𝑦𝐵 ∧ Pred ( 𝑅 , ( 𝐴𝐵 ) , 𝑦 ) = ∅ ) ) ↔ ( 𝑦𝐴 ∧ ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ∧ ¬ 𝑦𝐵 ) ) )
22 6 7 21 3bitri ( ( 𝑦 ∈ ( 𝐴𝐵 ) ∧ Pred ( 𝑅 , ( 𝐴𝐵 ) , 𝑦 ) = ∅ ) ↔ ( 𝑦𝐴 ∧ ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ∧ ¬ 𝑦𝐵 ) ) )
23 22 rexbii2 ( ∃ 𝑦 ∈ ( 𝐴𝐵 ) Pred ( 𝑅 , ( 𝐴𝐵 ) , 𝑦 ) = ∅ ↔ ∃ 𝑦𝐴 ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ∧ ¬ 𝑦𝐵 ) )
24 rexanali ( ∃ 𝑦𝐴 ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ∧ ¬ 𝑦𝐵 ) ↔ ¬ ∀ 𝑦𝐴 ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵𝑦𝐵 ) )
25 23 24 bitri ( ∃ 𝑦 ∈ ( 𝐴𝐵 ) Pred ( 𝑅 , ( 𝐴𝐵 ) , 𝑦 ) = ∅ ↔ ¬ ∀ 𝑦𝐴 ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵𝑦𝐵 ) )
26 4 25 sylib ( ( ( 𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴 ) ∧ ( ( 𝐴𝐵 ) ⊆ 𝐴 ∧ ( 𝐴𝐵 ) ≠ ∅ ) ) → ¬ ∀ 𝑦𝐴 ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵𝑦𝐵 ) )
27 26 ex ( ( 𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴 ) → ( ( ( 𝐴𝐵 ) ⊆ 𝐴 ∧ ( 𝐴𝐵 ) ≠ ∅ ) → ¬ ∀ 𝑦𝐴 ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵𝑦𝐵 ) ) )
28 3 27 mpani ( ( 𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴 ) → ( ( 𝐴𝐵 ) ≠ ∅ → ¬ ∀ 𝑦𝐴 ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵𝑦𝐵 ) ) )
29 2 28 syl5bi ( ( 𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴 ) → ( ¬ 𝐴𝐵 → ¬ ∀ 𝑦𝐴 ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵𝑦𝐵 ) ) )
30 29 con4d ( ( 𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴 ) → ( ∀ 𝑦𝐴 ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵𝑦𝐵 ) → 𝐴𝐵 ) )
31 30 imp ( ( ( 𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴 ) ∧ ∀ 𝑦𝐴 ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵𝑦𝐵 ) ) → 𝐴𝐵 )
32 31 adantrl ( ( ( 𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴 ) ∧ ( 𝐵𝐴 ∧ ∀ 𝑦𝐴 ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵𝑦𝐵 ) ) ) → 𝐴𝐵 )
33 simprl ( ( ( 𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴 ) ∧ ( 𝐵𝐴 ∧ ∀ 𝑦𝐴 ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵𝑦𝐵 ) ) ) → 𝐵𝐴 )
34 32 33 eqssd ( ( ( 𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴 ) ∧ ( 𝐵𝐴 ∧ ∀ 𝑦𝐴 ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵𝑦𝐵 ) ) ) → 𝐴 = 𝐵 )