Step |
Hyp |
Ref |
Expression |
1 |
|
fzfi |
⊢ ( 𝑀 ... 𝑁 ) ∈ Fin |
2 |
|
ffvelrn |
⊢ ( ( 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
3 |
2
|
ralrimiva |
⊢ ( 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ → ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
4 |
|
fimaxre3 |
⊢ ( ( ( 𝑀 ... 𝑁 ) ∈ Fin ∧ ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) |
5 |
1 3 4
|
sylancr |
⊢ ( 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) |
6 |
|
ffn |
⊢ ( 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ → 𝐹 Fn ( 𝑀 ... 𝑁 ) ) |
7 |
|
breq1 |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑘 ) → ( 𝑦 ≤ 𝑥 ↔ ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) ) |
8 |
7
|
ralrn |
⊢ ( 𝐹 Fn ( 𝑀 ... 𝑁 ) → ( ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ↔ ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) ) |
9 |
6 8
|
syl |
⊢ ( 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ → ( ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ↔ ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) ) |
10 |
9
|
rexbidv |
⊢ ( 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ → ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) ) |
11 |
5 10
|
mpbird |
⊢ ( 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) |