Step |
Hyp |
Ref |
Expression |
1 |
|
frn |
⊢ ( 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ → ran 𝐹 ⊆ ℝ ) |
2 |
1
|
adantl |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ ) → ran 𝐹 ⊆ ℝ ) |
3 |
|
fzfi |
⊢ ( 𝑀 ... 𝑁 ) ∈ Fin |
4 |
|
ffn |
⊢ ( 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ → 𝐹 Fn ( 𝑀 ... 𝑁 ) ) |
5 |
4
|
adantl |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ ) → 𝐹 Fn ( 𝑀 ... 𝑁 ) ) |
6 |
|
dffn4 |
⊢ ( 𝐹 Fn ( 𝑀 ... 𝑁 ) ↔ 𝐹 : ( 𝑀 ... 𝑁 ) –onto→ ran 𝐹 ) |
7 |
5 6
|
sylib |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ ) → 𝐹 : ( 𝑀 ... 𝑁 ) –onto→ ran 𝐹 ) |
8 |
|
fofi |
⊢ ( ( ( 𝑀 ... 𝑁 ) ∈ Fin ∧ 𝐹 : ( 𝑀 ... 𝑁 ) –onto→ ran 𝐹 ) → ran 𝐹 ∈ Fin ) |
9 |
3 7 8
|
sylancr |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ ) → ran 𝐹 ∈ Fin ) |
10 |
|
fdm |
⊢ ( 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ → dom 𝐹 = ( 𝑀 ... 𝑁 ) ) |
11 |
10
|
adantl |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ ) → dom 𝐹 = ( 𝑀 ... 𝑁 ) ) |
12 |
|
simpl |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
13 |
|
fzn0 |
⊢ ( ( 𝑀 ... 𝑁 ) ≠ ∅ ↔ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
14 |
12 13
|
sylibr |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ ) → ( 𝑀 ... 𝑁 ) ≠ ∅ ) |
15 |
11 14
|
eqnetrd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ ) → dom 𝐹 ≠ ∅ ) |
16 |
|
dm0rn0 |
⊢ ( dom 𝐹 = ∅ ↔ ran 𝐹 = ∅ ) |
17 |
16
|
necon3bii |
⊢ ( dom 𝐹 ≠ ∅ ↔ ran 𝐹 ≠ ∅ ) |
18 |
15 17
|
sylib |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ ) → ran 𝐹 ≠ ∅ ) |
19 |
|
ltso |
⊢ < Or ℝ |
20 |
|
fisupcl |
⊢ ( ( < Or ℝ ∧ ( ran 𝐹 ∈ Fin ∧ ran 𝐹 ≠ ∅ ∧ ran 𝐹 ⊆ ℝ ) ) → sup ( ran 𝐹 , ℝ , < ) ∈ ran 𝐹 ) |
21 |
19 20
|
mpan |
⊢ ( ( ran 𝐹 ∈ Fin ∧ ran 𝐹 ≠ ∅ ∧ ran 𝐹 ⊆ ℝ ) → sup ( ran 𝐹 , ℝ , < ) ∈ ran 𝐹 ) |
22 |
9 18 2 21
|
syl3anc |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ ) → sup ( ran 𝐹 , ℝ , < ) ∈ ran 𝐹 ) |
23 |
2 22
|
sseldd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ ) → sup ( ran 𝐹 , ℝ , < ) ∈ ℝ ) |