Step |
Hyp |
Ref |
Expression |
1 |
|
frn |
|- ( F : ( M ... N ) --> RR -> ran F C_ RR ) |
2 |
1
|
adantl |
|- ( ( N e. ( ZZ>= ` M ) /\ F : ( M ... N ) --> RR ) -> ran F C_ RR ) |
3 |
|
fzfi |
|- ( M ... N ) e. Fin |
4 |
|
ffn |
|- ( F : ( M ... N ) --> RR -> F Fn ( M ... N ) ) |
5 |
4
|
adantl |
|- ( ( N e. ( ZZ>= ` M ) /\ F : ( M ... N ) --> RR ) -> F Fn ( M ... N ) ) |
6 |
|
dffn4 |
|- ( F Fn ( M ... N ) <-> F : ( M ... N ) -onto-> ran F ) |
7 |
5 6
|
sylib |
|- ( ( N e. ( ZZ>= ` M ) /\ F : ( M ... N ) --> RR ) -> F : ( M ... N ) -onto-> ran F ) |
8 |
|
fofi |
|- ( ( ( M ... N ) e. Fin /\ F : ( M ... N ) -onto-> ran F ) -> ran F e. Fin ) |
9 |
3 7 8
|
sylancr |
|- ( ( N e. ( ZZ>= ` M ) /\ F : ( M ... N ) --> RR ) -> ran F e. Fin ) |
10 |
|
fdm |
|- ( F : ( M ... N ) --> RR -> dom F = ( M ... N ) ) |
11 |
10
|
adantl |
|- ( ( N e. ( ZZ>= ` M ) /\ F : ( M ... N ) --> RR ) -> dom F = ( M ... N ) ) |
12 |
|
simpl |
|- ( ( N e. ( ZZ>= ` M ) /\ F : ( M ... N ) --> RR ) -> N e. ( ZZ>= ` M ) ) |
13 |
|
fzn0 |
|- ( ( M ... N ) =/= (/) <-> N e. ( ZZ>= ` M ) ) |
14 |
12 13
|
sylibr |
|- ( ( N e. ( ZZ>= ` M ) /\ F : ( M ... N ) --> RR ) -> ( M ... N ) =/= (/) ) |
15 |
11 14
|
eqnetrd |
|- ( ( N e. ( ZZ>= ` M ) /\ F : ( M ... N ) --> RR ) -> dom F =/= (/) ) |
16 |
|
dm0rn0 |
|- ( dom F = (/) <-> ran F = (/) ) |
17 |
16
|
necon3bii |
|- ( dom F =/= (/) <-> ran F =/= (/) ) |
18 |
15 17
|
sylib |
|- ( ( N e. ( ZZ>= ` M ) /\ F : ( M ... N ) --> RR ) -> ran F =/= (/) ) |
19 |
|
ltso |
|- < Or RR |
20 |
|
fisupcl |
|- ( ( < Or RR /\ ( ran F e. Fin /\ ran F =/= (/) /\ ran F C_ RR ) ) -> sup ( ran F , RR , < ) e. ran F ) |
21 |
19 20
|
mpan |
|- ( ( ran F e. Fin /\ ran F =/= (/) /\ ran F C_ RR ) -> sup ( ran F , RR , < ) e. ran F ) |
22 |
9 18 2 21
|
syl3anc |
|- ( ( N e. ( ZZ>= ` M ) /\ F : ( M ... N ) --> RR ) -> sup ( ran F , RR , < ) e. ran F ) |
23 |
2 22
|
sseldd |
|- ( ( N e. ( ZZ>= ` M ) /\ F : ( M ... N ) --> RR ) -> sup ( ran F , RR , < ) e. RR ) |