Metamath Proof Explorer


Theorem fseqsupcl

Description: The values of a finite real sequence have a supremum. (Contributed by NM, 20-Sep-2005) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion fseqsupcl N M F : M N sup ran F <

Proof

Step Hyp Ref Expression
1 frn F : M N ran F
2 1 adantl N M F : M N ran F
3 fzfi M N Fin
4 ffn F : M N F Fn M N
5 4 adantl N M F : M N F Fn M N
6 dffn4 F Fn M N F : M N onto ran F
7 5 6 sylib N M F : M N F : M N onto ran F
8 fofi M N Fin F : M N onto ran F ran F Fin
9 3 7 8 sylancr N M F : M N ran F Fin
10 fdm F : M N dom F = M N
11 10 adantl N M F : M N dom F = M N
12 simpl N M F : M N N M
13 fzn0 M N N M
14 12 13 sylibr N M F : M N M N
15 11 14 eqnetrd N M F : M N dom F
16 dm0rn0 dom F = ran F =
17 16 necon3bii dom F ran F
18 15 17 sylib N M F : M N ran F
19 ltso < Or
20 fisupcl < Or ran F Fin ran F ran F sup ran F < ran F
21 19 20 mpan ran F Fin ran F ran F sup ran F < ran F
22 9 18 2 21 syl3anc N M F : M N sup ran F < ran F
23 2 22 sseldd N M F : M N sup ran F <