Metamath Proof Explorer


Theorem fseqsupubi

Description: The values of a finite real sequence are bounded by their supremum. (Contributed by NM, 20-Sep-2005)

Ref Expression
Assertion fseqsupubi KMNF:MNFKsupranF<

Proof

Step Hyp Ref Expression
1 frn F:MNranF
2 1 adantl KMNF:MNranF
3 fdm F:MNdomF=MN
4 ne0i KMNMN
5 dm0rn0 domF=ranF=
6 eqeq1 domF=MNdomF=MN=
7 6 biimpd domF=MNdomF=MN=
8 5 7 biimtrrid domF=MNranF=MN=
9 8 necon3d domF=MNMNranF
10 4 9 mpan9 KMNdomF=MNranF
11 3 10 sylan2 KMNF:MNranF
12 fsequb2 F:MNxyranFyx
13 12 adantl KMNF:MNxyranFyx
14 ffn F:MNFFnMN
15 fnfvelrn FFnMNKMNFKranF
16 15 ancoms KMNFFnMNFKranF
17 14 16 sylan2 KMNF:MNFKranF
18 2 11 13 17 suprubd KMNF:MNFKsupranF<