Metamath Proof Explorer


Theorem ftc1

Description: The Fundamental Theorem of Calculus, part one. The function formed by varying the right endpoint of an integral is differentiable at C with derivative F ( C ) if the original function is continuous at C . This is part of Metamath 100 proof #15. (Contributed by Mario Carneiro, 1-Sep-2014)

Ref Expression
Hypotheses ftc1.g 𝐺 = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ∫ ( 𝐴 (,) 𝑥 ) ( 𝐹𝑡 ) d 𝑡 )
ftc1.a ( 𝜑𝐴 ∈ ℝ )
ftc1.b ( 𝜑𝐵 ∈ ℝ )
ftc1.le ( 𝜑𝐴𝐵 )
ftc1.s ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ 𝐷 )
ftc1.d ( 𝜑𝐷 ⊆ ℝ )
ftc1.i ( 𝜑𝐹 ∈ 𝐿1 )
ftc1.c ( 𝜑𝐶 ∈ ( 𝐴 (,) 𝐵 ) )
ftc1.f ( 𝜑𝐹 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ 𝐶 ) )
ftc1.j 𝐽 = ( 𝐿t ℝ )
ftc1.k 𝐾 = ( 𝐿t 𝐷 )
ftc1.l 𝐿 = ( TopOpen ‘ ℂfld )
Assertion ftc1 ( 𝜑𝐶 ( ℝ D 𝐺 ) ( 𝐹𝐶 ) )

Proof

Step Hyp Ref Expression
1 ftc1.g 𝐺 = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ∫ ( 𝐴 (,) 𝑥 ) ( 𝐹𝑡 ) d 𝑡 )
2 ftc1.a ( 𝜑𝐴 ∈ ℝ )
3 ftc1.b ( 𝜑𝐵 ∈ ℝ )
4 ftc1.le ( 𝜑𝐴𝐵 )
5 ftc1.s ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ 𝐷 )
6 ftc1.d ( 𝜑𝐷 ⊆ ℝ )
7 ftc1.i ( 𝜑𝐹 ∈ 𝐿1 )
8 ftc1.c ( 𝜑𝐶 ∈ ( 𝐴 (,) 𝐵 ) )
9 ftc1.f ( 𝜑𝐹 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ 𝐶 ) )
10 ftc1.j 𝐽 = ( 𝐿t ℝ )
11 ftc1.k 𝐾 = ( 𝐿t 𝐷 )
12 ftc1.l 𝐿 = ( TopOpen ‘ ℂfld )
13 12 tgioo2 ( topGen ‘ ran (,) ) = ( 𝐿t ℝ )
14 10 13 eqtr4i 𝐽 = ( topGen ‘ ran (,) )
15 retop ( topGen ‘ ran (,) ) ∈ Top
16 14 15 eqeltri 𝐽 ∈ Top
17 16 a1i ( 𝜑𝐽 ∈ Top )
18 iccssre ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ )
19 2 3 18 syl2anc ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ )
20 iooretop ( 𝐴 (,) 𝐵 ) ∈ ( topGen ‘ ran (,) )
21 20 14 eleqtrri ( 𝐴 (,) 𝐵 ) ∈ 𝐽
22 21 a1i ( 𝜑 → ( 𝐴 (,) 𝐵 ) ∈ 𝐽 )
23 ioossicc ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 )
24 23 a1i ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) )
25 uniretop ℝ = ( topGen ‘ ran (,) )
26 14 unieqi 𝐽 = ( topGen ‘ ran (,) )
27 25 26 eqtr4i ℝ = 𝐽
28 27 ssntr ( ( ( 𝐽 ∈ Top ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) ∧ ( ( 𝐴 (,) 𝐵 ) ∈ 𝐽 ∧ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐴 (,) 𝐵 ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 [,] 𝐵 ) ) )
29 17 19 22 24 28 syl22anc ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 [,] 𝐵 ) ) )
30 29 8 sseldd ( 𝜑𝐶 ∈ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 [,] 𝐵 ) ) )
31 eqid ( 𝑧 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ↦ ( ( ( 𝐺𝑧 ) − ( 𝐺𝐶 ) ) / ( 𝑧𝐶 ) ) ) = ( 𝑧 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ↦ ( ( ( 𝐺𝑧 ) − ( 𝐺𝐶 ) ) / ( 𝑧𝐶 ) ) )
32 1 2 3 4 5 6 7 8 9 10 11 12 31 ftc1lem6 ( 𝜑 → ( 𝐹𝐶 ) ∈ ( ( 𝑧 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ↦ ( ( ( 𝐺𝑧 ) − ( 𝐺𝐶 ) ) / ( 𝑧𝐶 ) ) ) lim 𝐶 ) )
33 ax-resscn ℝ ⊆ ℂ
34 33 a1i ( 𝜑 → ℝ ⊆ ℂ )
35 1 2 3 4 5 6 7 8 9 10 11 12 ftc1lem3 ( 𝜑𝐹 : 𝐷 ⟶ ℂ )
36 1 2 3 4 5 6 7 35 ftc1lem2 ( 𝜑𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ )
37 10 12 31 34 36 19 eldv ( 𝜑 → ( 𝐶 ( ℝ D 𝐺 ) ( 𝐹𝐶 ) ↔ ( 𝐶 ∈ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝐹𝐶 ) ∈ ( ( 𝑧 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ↦ ( ( ( 𝐺𝑧 ) − ( 𝐺𝐶 ) ) / ( 𝑧𝐶 ) ) ) lim 𝐶 ) ) ) )
38 30 32 37 mpbir2and ( 𝜑𝐶 ( ℝ D 𝐺 ) ( 𝐹𝐶 ) )