| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ftc1cn.g |
⊢ 𝐺 = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ∫ ( 𝐴 (,) 𝑥 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
| 2 |
|
ftc1cn.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 3 |
|
ftc1cn.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 4 |
|
ftc1cn.le |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
| 5 |
|
ftc1cn.f |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
| 6 |
|
ftc1cn.i |
⊢ ( 𝜑 → 𝐹 ∈ 𝐿1 ) |
| 7 |
|
dvf |
⊢ ( ℝ D 𝐺 ) : dom ( ℝ D 𝐺 ) ⟶ ℂ |
| 8 |
7
|
a1i |
⊢ ( 𝜑 → ( ℝ D 𝐺 ) : dom ( ℝ D 𝐺 ) ⟶ ℂ ) |
| 9 |
8
|
ffund |
⊢ ( 𝜑 → Fun ( ℝ D 𝐺 ) ) |
| 10 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 11 |
10
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
| 12 |
|
ssidd |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 13 |
|
ioossre |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℝ |
| 14 |
13
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) |
| 15 |
|
cncff |
⊢ ( 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
| 16 |
5 15
|
syl |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
| 17 |
1 2 3 4 12 14 6 16
|
ftc1lem2 |
⊢ ( 𝜑 → 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
| 18 |
|
iccssre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 19 |
2 3 18
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 20 |
|
tgioo4 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
| 21 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 22 |
11 17 19 20 21
|
dvbssntr |
⊢ ( 𝜑 → dom ( ℝ D 𝐺 ) ⊆ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) |
| 23 |
|
iccntr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) ) |
| 24 |
2 3 23
|
syl2anc |
⊢ ( 𝜑 → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) ) |
| 25 |
22 24
|
sseqtrd |
⊢ ( 𝜑 → dom ( ℝ D 𝐺 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 26 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐴 ∈ ℝ ) |
| 27 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐵 ∈ ℝ ) |
| 28 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐴 ≤ 𝐵 ) |
| 29 |
|
ssidd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 30 |
13
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) |
| 31 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐹 ∈ 𝐿1 ) |
| 32 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 33 |
13 10
|
sstri |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℂ |
| 34 |
|
ssid |
⊢ ℂ ⊆ ℂ |
| 35 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) |
| 36 |
21
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 37 |
36
|
toponrestid |
⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
| 38 |
21 35 37
|
cncfcn |
⊢ ( ( ( 𝐴 (,) 𝐵 ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 39 |
33 34 38
|
mp2an |
⊢ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) |
| 40 |
5 39
|
eleqtrdi |
⊢ ( 𝜑 → 𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 41 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 42 |
33
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ℂ ) |
| 43 |
|
resttopon |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ( 𝐴 (,) 𝐵 ) ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) ∈ ( TopOn ‘ ( 𝐴 (,) 𝐵 ) ) ) |
| 44 |
36 42 43
|
sylancr |
⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) ∈ ( TopOn ‘ ( 𝐴 (,) 𝐵 ) ) ) |
| 45 |
|
toponuni |
⊢ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) ∈ ( TopOn ‘ ( 𝐴 (,) 𝐵 ) ) → ( 𝐴 (,) 𝐵 ) = ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) ) |
| 46 |
44 45
|
syl |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) = ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) ) |
| 47 |
46
|
eleq2d |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↔ 𝑦 ∈ ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) ) ) |
| 48 |
47
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑦 ∈ ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) ) |
| 49 |
|
eqid |
⊢ ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) = ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) |
| 50 |
49
|
cncnpi |
⊢ ( ( 𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ∧ 𝑦 ∈ ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) ) → 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
| 51 |
41 48 50
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
| 52 |
1 26 27 28 29 30 31 32 51 20 35 21
|
ftc1 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑦 ( ℝ D 𝐺 ) ( 𝐹 ‘ 𝑦 ) ) |
| 53 |
|
vex |
⊢ 𝑦 ∈ V |
| 54 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑦 ) ∈ V |
| 55 |
53 54
|
breldm |
⊢ ( 𝑦 ( ℝ D 𝐺 ) ( 𝐹 ‘ 𝑦 ) → 𝑦 ∈ dom ( ℝ D 𝐺 ) ) |
| 56 |
52 55
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑦 ∈ dom ( ℝ D 𝐺 ) ) |
| 57 |
25 56
|
eqelssd |
⊢ ( 𝜑 → dom ( ℝ D 𝐺 ) = ( 𝐴 (,) 𝐵 ) ) |
| 58 |
|
df-fn |
⊢ ( ( ℝ D 𝐺 ) Fn ( 𝐴 (,) 𝐵 ) ↔ ( Fun ( ℝ D 𝐺 ) ∧ dom ( ℝ D 𝐺 ) = ( 𝐴 (,) 𝐵 ) ) ) |
| 59 |
9 57 58
|
sylanbrc |
⊢ ( 𝜑 → ( ℝ D 𝐺 ) Fn ( 𝐴 (,) 𝐵 ) ) |
| 60 |
16
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn ( 𝐴 (,) 𝐵 ) ) |
| 61 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → Fun ( ℝ D 𝐺 ) ) |
| 62 |
|
funbrfv |
⊢ ( Fun ( ℝ D 𝐺 ) → ( 𝑦 ( ℝ D 𝐺 ) ( 𝐹 ‘ 𝑦 ) → ( ( ℝ D 𝐺 ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) ) |
| 63 |
61 52 62
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐺 ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 64 |
59 60 63
|
eqfnfvd |
⊢ ( 𝜑 → ( ℝ D 𝐺 ) = 𝐹 ) |