| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1l |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ∧ 𝐴 𝐹 𝐵 ) → 𝐴 ∈ 𝑉 ) |
| 2 |
|
simp1r |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ∧ 𝐴 𝐹 𝐵 ) → 𝐵 ∈ 𝑊 ) |
| 3 |
|
simp3 |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ∧ 𝐴 𝐹 𝐵 ) → 𝐴 𝐹 𝐵 ) |
| 4 |
|
breldmg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 𝐹 𝐵 ) → 𝐴 ∈ dom 𝐹 ) |
| 5 |
1 2 3 4
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ∧ 𝐴 𝐹 𝐵 ) → 𝐴 ∈ dom 𝐹 ) |
| 6 |
|
eldmg |
⊢ ( 𝐴 ∈ dom 𝐹 → ( 𝐴 ∈ dom 𝐹 ↔ ∃ 𝑦 𝐴 𝐹 𝑦 ) ) |
| 7 |
6
|
ibi |
⊢ ( 𝐴 ∈ dom 𝐹 → ∃ 𝑦 𝐴 𝐹 𝑦 ) |
| 8 |
5 7
|
syl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ∧ 𝐴 𝐹 𝐵 ) → ∃ 𝑦 𝐴 𝐹 𝑦 ) |
| 9 |
|
simpl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 𝐴 ∈ 𝑉 ) |
| 10 |
9
|
anim1i |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) → ( 𝐴 ∈ 𝑉 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) ) |
| 11 |
10
|
3adant3 |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ∧ 𝐴 𝐹 𝐵 ) → ( 𝐴 ∈ 𝑉 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) ) |
| 12 |
|
funressnmo |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) → ∃* 𝑦 𝐴 𝐹 𝑦 ) |
| 13 |
11 12
|
syl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ∧ 𝐴 𝐹 𝐵 ) → ∃* 𝑦 𝐴 𝐹 𝑦 ) |
| 14 |
|
moeu |
⊢ ( ∃* 𝑦 𝐴 𝐹 𝑦 ↔ ( ∃ 𝑦 𝐴 𝐹 𝑦 → ∃! 𝑦 𝐴 𝐹 𝑦 ) ) |
| 15 |
13 14
|
sylib |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ∧ 𝐴 𝐹 𝐵 ) → ( ∃ 𝑦 𝐴 𝐹 𝑦 → ∃! 𝑦 𝐴 𝐹 𝑦 ) ) |
| 16 |
8 15
|
mpd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ∧ 𝐴 𝐹 𝐵 ) → ∃! 𝑦 𝐴 𝐹 𝑦 ) |