Metamath Proof Explorer


Theorem funressneu

Description: There is exactly one value of a class which is a function restricted to a singleton, analogous to funeu . A e. _V is required because otherwise E! y A F y , see brprcneu . (Contributed by AV, 7-Sep-2022)

Ref Expression
Assertion funressneu ( ( ( 𝐴𝑉𝐵𝑊 ) ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ∧ 𝐴 𝐹 𝐵 ) → ∃! 𝑦 𝐴 𝐹 𝑦 )

Proof

Step Hyp Ref Expression
1 simp1l ( ( ( 𝐴𝑉𝐵𝑊 ) ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ∧ 𝐴 𝐹 𝐵 ) → 𝐴𝑉 )
2 simp1r ( ( ( 𝐴𝑉𝐵𝑊 ) ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ∧ 𝐴 𝐹 𝐵 ) → 𝐵𝑊 )
3 simp3 ( ( ( 𝐴𝑉𝐵𝑊 ) ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ∧ 𝐴 𝐹 𝐵 ) → 𝐴 𝐹 𝐵 )
4 breldmg ( ( 𝐴𝑉𝐵𝑊𝐴 𝐹 𝐵 ) → 𝐴 ∈ dom 𝐹 )
5 1 2 3 4 syl3anc ( ( ( 𝐴𝑉𝐵𝑊 ) ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ∧ 𝐴 𝐹 𝐵 ) → 𝐴 ∈ dom 𝐹 )
6 eldmg ( 𝐴 ∈ dom 𝐹 → ( 𝐴 ∈ dom 𝐹 ↔ ∃ 𝑦 𝐴 𝐹 𝑦 ) )
7 6 ibi ( 𝐴 ∈ dom 𝐹 → ∃ 𝑦 𝐴 𝐹 𝑦 )
8 5 7 syl ( ( ( 𝐴𝑉𝐵𝑊 ) ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ∧ 𝐴 𝐹 𝐵 ) → ∃ 𝑦 𝐴 𝐹 𝑦 )
9 simpl ( ( 𝐴𝑉𝐵𝑊 ) → 𝐴𝑉 )
10 9 anim1i ( ( ( 𝐴𝑉𝐵𝑊 ) ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) → ( 𝐴𝑉 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) )
11 10 3adant3 ( ( ( 𝐴𝑉𝐵𝑊 ) ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ∧ 𝐴 𝐹 𝐵 ) → ( 𝐴𝑉 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) )
12 funressnmo ( ( 𝐴𝑉 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) → ∃* 𝑦 𝐴 𝐹 𝑦 )
13 11 12 syl ( ( ( 𝐴𝑉𝐵𝑊 ) ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ∧ 𝐴 𝐹 𝐵 ) → ∃* 𝑦 𝐴 𝐹 𝑦 )
14 moeu ( ∃* 𝑦 𝐴 𝐹 𝑦 ↔ ( ∃ 𝑦 𝐴 𝐹 𝑦 → ∃! 𝑦 𝐴 𝐹 𝑦 ) )
15 13 14 sylib ( ( ( 𝐴𝑉𝐵𝑊 ) ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ∧ 𝐴 𝐹 𝐵 ) → ( ∃ 𝑦 𝐴 𝐹 𝑦 → ∃! 𝑦 𝐴 𝐹 𝑦 ) )
16 8 15 mpd ( ( ( 𝐴𝑉𝐵𝑊 ) ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ∧ 𝐴 𝐹 𝐵 ) → ∃! 𝑦 𝐴 𝐹 𝑦 )