Step |
Hyp |
Ref |
Expression |
1 |
|
simp1l |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ∧ 𝐴 𝐹 𝐵 ) → 𝐴 ∈ 𝑉 ) |
2 |
|
simp1r |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ∧ 𝐴 𝐹 𝐵 ) → 𝐵 ∈ 𝑊 ) |
3 |
|
simp3 |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ∧ 𝐴 𝐹 𝐵 ) → 𝐴 𝐹 𝐵 ) |
4 |
|
breldmg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 𝐹 𝐵 ) → 𝐴 ∈ dom 𝐹 ) |
5 |
1 2 3 4
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ∧ 𝐴 𝐹 𝐵 ) → 𝐴 ∈ dom 𝐹 ) |
6 |
|
eldmg |
⊢ ( 𝐴 ∈ dom 𝐹 → ( 𝐴 ∈ dom 𝐹 ↔ ∃ 𝑦 𝐴 𝐹 𝑦 ) ) |
7 |
6
|
ibi |
⊢ ( 𝐴 ∈ dom 𝐹 → ∃ 𝑦 𝐴 𝐹 𝑦 ) |
8 |
5 7
|
syl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ∧ 𝐴 𝐹 𝐵 ) → ∃ 𝑦 𝐴 𝐹 𝑦 ) |
9 |
|
simpl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 𝐴 ∈ 𝑉 ) |
10 |
9
|
anim1i |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) → ( 𝐴 ∈ 𝑉 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) ) |
11 |
10
|
3adant3 |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ∧ 𝐴 𝐹 𝐵 ) → ( 𝐴 ∈ 𝑉 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) ) |
12 |
|
funressnmo |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) → ∃* 𝑦 𝐴 𝐹 𝑦 ) |
13 |
11 12
|
syl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ∧ 𝐴 𝐹 𝐵 ) → ∃* 𝑦 𝐴 𝐹 𝑦 ) |
14 |
|
moeu |
⊢ ( ∃* 𝑦 𝐴 𝐹 𝑦 ↔ ( ∃ 𝑦 𝐴 𝐹 𝑦 → ∃! 𝑦 𝐴 𝐹 𝑦 ) ) |
15 |
13 14
|
sylib |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ∧ 𝐴 𝐹 𝐵 ) → ( ∃ 𝑦 𝐴 𝐹 𝑦 → ∃! 𝑦 𝐴 𝐹 𝑦 ) ) |
16 |
8 15
|
mpd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ∧ 𝐴 𝐹 𝐵 ) → ∃! 𝑦 𝐴 𝐹 𝑦 ) |