Metamath Proof Explorer


Theorem gafo

Description: A group action is onto its base set. (Contributed by Jeff Hankins, 10-Aug-2009) (Revised by Mario Carneiro, 13-Jan-2015)

Ref Expression
Hypothesis gaf.1 𝑋 = ( Base ‘ 𝐺 )
Assertion gafo ( ∈ ( 𝐺 GrpAct 𝑌 ) → : ( 𝑋 × 𝑌 ) –onto𝑌 )

Proof

Step Hyp Ref Expression
1 gaf.1 𝑋 = ( Base ‘ 𝐺 )
2 1 gaf ( ∈ ( 𝐺 GrpAct 𝑌 ) → : ( 𝑋 × 𝑌 ) ⟶ 𝑌 )
3 gagrp ( ∈ ( 𝐺 GrpAct 𝑌 ) → 𝐺 ∈ Grp )
4 3 adantr ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑥𝑌 ) → 𝐺 ∈ Grp )
5 eqid ( 0g𝐺 ) = ( 0g𝐺 )
6 1 5 grpidcl ( 𝐺 ∈ Grp → ( 0g𝐺 ) ∈ 𝑋 )
7 4 6 syl ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑥𝑌 ) → ( 0g𝐺 ) ∈ 𝑋 )
8 simpr ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑥𝑌 ) → 𝑥𝑌 )
9 5 gagrpid ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑥𝑌 ) → ( ( 0g𝐺 ) 𝑥 ) = 𝑥 )
10 9 eqcomd ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑥𝑌 ) → 𝑥 = ( ( 0g𝐺 ) 𝑥 ) )
11 rspceov ( ( ( 0g𝐺 ) ∈ 𝑋𝑥𝑌𝑥 = ( ( 0g𝐺 ) 𝑥 ) ) → ∃ 𝑦𝑋𝑧𝑌 𝑥 = ( 𝑦 𝑧 ) )
12 7 8 10 11 syl3anc ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑥𝑌 ) → ∃ 𝑦𝑋𝑧𝑌 𝑥 = ( 𝑦 𝑧 ) )
13 12 ralrimiva ( ∈ ( 𝐺 GrpAct 𝑌 ) → ∀ 𝑥𝑌𝑦𝑋𝑧𝑌 𝑥 = ( 𝑦 𝑧 ) )
14 foov ( : ( 𝑋 × 𝑌 ) –onto𝑌 ↔ ( : ( 𝑋 × 𝑌 ) ⟶ 𝑌 ∧ ∀ 𝑥𝑌𝑦𝑋𝑧𝑌 𝑥 = ( 𝑦 𝑧 ) ) )
15 2 13 14 sylanbrc ( ∈ ( 𝐺 GrpAct 𝑌 ) → : ( 𝑋 × 𝑌 ) –onto𝑌 )