| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gchaclem.1 |
⊢ ( 𝜑 → ω ≼ 𝐴 ) |
| 2 |
|
gchaclem.3 |
⊢ ( 𝜑 → 𝒫 𝐶 ∈ GCH ) |
| 3 |
|
gchaclem.4 |
⊢ ( 𝜑 → ( 𝐴 ≼ 𝐶 ∧ ( 𝐵 ≼ 𝒫 𝐶 → 𝒫 𝐴 ≼ 𝐵 ) ) ) |
| 4 |
3
|
simpld |
⊢ ( 𝜑 → 𝐴 ≼ 𝐶 ) |
| 5 |
|
reldom |
⊢ Rel ≼ |
| 6 |
5
|
brrelex2i |
⊢ ( 𝐴 ≼ 𝐶 → 𝐶 ∈ V ) |
| 7 |
4 6
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ V ) |
| 8 |
|
canth2g |
⊢ ( 𝐶 ∈ V → 𝐶 ≺ 𝒫 𝐶 ) |
| 9 |
|
sdomdom |
⊢ ( 𝐶 ≺ 𝒫 𝐶 → 𝐶 ≼ 𝒫 𝐶 ) |
| 10 |
7 8 9
|
3syl |
⊢ ( 𝜑 → 𝐶 ≼ 𝒫 𝐶 ) |
| 11 |
|
domtr |
⊢ ( ( 𝐴 ≼ 𝐶 ∧ 𝐶 ≼ 𝒫 𝐶 ) → 𝐴 ≼ 𝒫 𝐶 ) |
| 12 |
4 10 11
|
syl2anc |
⊢ ( 𝜑 → 𝐴 ≼ 𝒫 𝐶 ) |
| 13 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≼ 𝒫 𝒫 𝐶 ) → 𝒫 𝐶 ∈ GCH ) |
| 14 |
|
domtr |
⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ≼ 𝐶 ) → ω ≼ 𝐶 ) |
| 15 |
1 4 14
|
syl2anc |
⊢ ( 𝜑 → ω ≼ 𝐶 ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≼ 𝒫 𝒫 𝐶 ) → ω ≼ 𝐶 ) |
| 17 |
|
pwdjuidm |
⊢ ( ω ≼ 𝐶 → ( 𝒫 𝐶 ⊔ 𝒫 𝐶 ) ≈ 𝒫 𝐶 ) |
| 18 |
16 17
|
syl |
⊢ ( ( 𝜑 ∧ 𝐵 ≼ 𝒫 𝒫 𝐶 ) → ( 𝒫 𝐶 ⊔ 𝒫 𝐶 ) ≈ 𝒫 𝐶 ) |
| 19 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐵 ≼ 𝒫 𝒫 𝐶 ) → 𝐵 ≼ 𝒫 𝒫 𝐶 ) |
| 20 |
|
gchdomtri |
⊢ ( ( 𝒫 𝐶 ∈ GCH ∧ ( 𝒫 𝐶 ⊔ 𝒫 𝐶 ) ≈ 𝒫 𝐶 ∧ 𝐵 ≼ 𝒫 𝒫 𝐶 ) → ( 𝒫 𝐶 ≼ 𝐵 ∨ 𝐵 ≼ 𝒫 𝐶 ) ) |
| 21 |
13 18 19 20
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝐵 ≼ 𝒫 𝒫 𝐶 ) → ( 𝒫 𝐶 ≼ 𝐵 ∨ 𝐵 ≼ 𝒫 𝐶 ) ) |
| 22 |
21
|
ex |
⊢ ( 𝜑 → ( 𝐵 ≼ 𝒫 𝒫 𝐶 → ( 𝒫 𝐶 ≼ 𝐵 ∨ 𝐵 ≼ 𝒫 𝐶 ) ) ) |
| 23 |
|
pwdom |
⊢ ( 𝐴 ≼ 𝐶 → 𝒫 𝐴 ≼ 𝒫 𝐶 ) |
| 24 |
|
domtr |
⊢ ( ( 𝒫 𝐴 ≼ 𝒫 𝐶 ∧ 𝒫 𝐶 ≼ 𝐵 ) → 𝒫 𝐴 ≼ 𝐵 ) |
| 25 |
24
|
ex |
⊢ ( 𝒫 𝐴 ≼ 𝒫 𝐶 → ( 𝒫 𝐶 ≼ 𝐵 → 𝒫 𝐴 ≼ 𝐵 ) ) |
| 26 |
4 23 25
|
3syl |
⊢ ( 𝜑 → ( 𝒫 𝐶 ≼ 𝐵 → 𝒫 𝐴 ≼ 𝐵 ) ) |
| 27 |
3
|
simprd |
⊢ ( 𝜑 → ( 𝐵 ≼ 𝒫 𝐶 → 𝒫 𝐴 ≼ 𝐵 ) ) |
| 28 |
26 27
|
jaod |
⊢ ( 𝜑 → ( ( 𝒫 𝐶 ≼ 𝐵 ∨ 𝐵 ≼ 𝒫 𝐶 ) → 𝒫 𝐴 ≼ 𝐵 ) ) |
| 29 |
22 28
|
syld |
⊢ ( 𝜑 → ( 𝐵 ≼ 𝒫 𝒫 𝐶 → 𝒫 𝐴 ≼ 𝐵 ) ) |
| 30 |
12 29
|
jca |
⊢ ( 𝜑 → ( 𝐴 ≼ 𝒫 𝐶 ∧ ( 𝐵 ≼ 𝒫 𝒫 𝐶 → 𝒫 𝐴 ≼ 𝐵 ) ) ) |