| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gchaclem.1 | ⊢ ( 𝜑  →  ω  ≼  𝐴 ) | 
						
							| 2 |  | gchaclem.3 | ⊢ ( 𝜑  →  𝒫  𝐶  ∈  GCH ) | 
						
							| 3 |  | gchaclem.4 | ⊢ ( 𝜑  →  ( 𝐴  ≼  𝐶  ∧  ( 𝐵  ≼  𝒫  𝐶  →  𝒫  𝐴  ≼  𝐵 ) ) ) | 
						
							| 4 | 3 | simpld | ⊢ ( 𝜑  →  𝐴  ≼  𝐶 ) | 
						
							| 5 |  | reldom | ⊢ Rel   ≼ | 
						
							| 6 | 5 | brrelex2i | ⊢ ( 𝐴  ≼  𝐶  →  𝐶  ∈  V ) | 
						
							| 7 | 4 6 | syl | ⊢ ( 𝜑  →  𝐶  ∈  V ) | 
						
							| 8 |  | canth2g | ⊢ ( 𝐶  ∈  V  →  𝐶  ≺  𝒫  𝐶 ) | 
						
							| 9 |  | sdomdom | ⊢ ( 𝐶  ≺  𝒫  𝐶  →  𝐶  ≼  𝒫  𝐶 ) | 
						
							| 10 | 7 8 9 | 3syl | ⊢ ( 𝜑  →  𝐶  ≼  𝒫  𝐶 ) | 
						
							| 11 |  | domtr | ⊢ ( ( 𝐴  ≼  𝐶  ∧  𝐶  ≼  𝒫  𝐶 )  →  𝐴  ≼  𝒫  𝐶 ) | 
						
							| 12 | 4 10 11 | syl2anc | ⊢ ( 𝜑  →  𝐴  ≼  𝒫  𝐶 ) | 
						
							| 13 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  ≼  𝒫  𝒫  𝐶 )  →  𝒫  𝐶  ∈  GCH ) | 
						
							| 14 |  | domtr | ⊢ ( ( ω  ≼  𝐴  ∧  𝐴  ≼  𝐶 )  →  ω  ≼  𝐶 ) | 
						
							| 15 | 1 4 14 | syl2anc | ⊢ ( 𝜑  →  ω  ≼  𝐶 ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  ≼  𝒫  𝒫  𝐶 )  →  ω  ≼  𝐶 ) | 
						
							| 17 |  | pwdjuidm | ⊢ ( ω  ≼  𝐶  →  ( 𝒫  𝐶  ⊔  𝒫  𝐶 )  ≈  𝒫  𝐶 ) | 
						
							| 18 | 16 17 | syl | ⊢ ( ( 𝜑  ∧  𝐵  ≼  𝒫  𝒫  𝐶 )  →  ( 𝒫  𝐶  ⊔  𝒫  𝐶 )  ≈  𝒫  𝐶 ) | 
						
							| 19 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐵  ≼  𝒫  𝒫  𝐶 )  →  𝐵  ≼  𝒫  𝒫  𝐶 ) | 
						
							| 20 |  | gchdomtri | ⊢ ( ( 𝒫  𝐶  ∈  GCH  ∧  ( 𝒫  𝐶  ⊔  𝒫  𝐶 )  ≈  𝒫  𝐶  ∧  𝐵  ≼  𝒫  𝒫  𝐶 )  →  ( 𝒫  𝐶  ≼  𝐵  ∨  𝐵  ≼  𝒫  𝐶 ) ) | 
						
							| 21 | 13 18 19 20 | syl3anc | ⊢ ( ( 𝜑  ∧  𝐵  ≼  𝒫  𝒫  𝐶 )  →  ( 𝒫  𝐶  ≼  𝐵  ∨  𝐵  ≼  𝒫  𝐶 ) ) | 
						
							| 22 | 21 | ex | ⊢ ( 𝜑  →  ( 𝐵  ≼  𝒫  𝒫  𝐶  →  ( 𝒫  𝐶  ≼  𝐵  ∨  𝐵  ≼  𝒫  𝐶 ) ) ) | 
						
							| 23 |  | pwdom | ⊢ ( 𝐴  ≼  𝐶  →  𝒫  𝐴  ≼  𝒫  𝐶 ) | 
						
							| 24 |  | domtr | ⊢ ( ( 𝒫  𝐴  ≼  𝒫  𝐶  ∧  𝒫  𝐶  ≼  𝐵 )  →  𝒫  𝐴  ≼  𝐵 ) | 
						
							| 25 | 24 | ex | ⊢ ( 𝒫  𝐴  ≼  𝒫  𝐶  →  ( 𝒫  𝐶  ≼  𝐵  →  𝒫  𝐴  ≼  𝐵 ) ) | 
						
							| 26 | 4 23 25 | 3syl | ⊢ ( 𝜑  →  ( 𝒫  𝐶  ≼  𝐵  →  𝒫  𝐴  ≼  𝐵 ) ) | 
						
							| 27 | 3 | simprd | ⊢ ( 𝜑  →  ( 𝐵  ≼  𝒫  𝐶  →  𝒫  𝐴  ≼  𝐵 ) ) | 
						
							| 28 | 26 27 | jaod | ⊢ ( 𝜑  →  ( ( 𝒫  𝐶  ≼  𝐵  ∨  𝐵  ≼  𝒫  𝐶 )  →  𝒫  𝐴  ≼  𝐵 ) ) | 
						
							| 29 | 22 28 | syld | ⊢ ( 𝜑  →  ( 𝐵  ≼  𝒫  𝒫  𝐶  →  𝒫  𝐴  ≼  𝐵 ) ) | 
						
							| 30 | 12 29 | jca | ⊢ ( 𝜑  →  ( 𝐴  ≼  𝒫  𝐶  ∧  ( 𝐵  ≼  𝒫  𝒫  𝐶  →  𝒫  𝐴  ≼  𝐵 ) ) ) |