Metamath Proof Explorer


Theorem gchaclem

Description: Lemma for gchac (obsolete, used in Sierpiński's proof). (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Hypotheses gchaclem.1 ( 𝜑 → ω ≼ 𝐴 )
gchaclem.3 ( 𝜑 → 𝒫 𝐶 ∈ GCH )
gchaclem.4 ( 𝜑 → ( 𝐴𝐶 ∧ ( 𝐵 ≼ 𝒫 𝐶 → 𝒫 𝐴𝐵 ) ) )
Assertion gchaclem ( 𝜑 → ( 𝐴 ≼ 𝒫 𝐶 ∧ ( 𝐵 ≼ 𝒫 𝒫 𝐶 → 𝒫 𝐴𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 gchaclem.1 ( 𝜑 → ω ≼ 𝐴 )
2 gchaclem.3 ( 𝜑 → 𝒫 𝐶 ∈ GCH )
3 gchaclem.4 ( 𝜑 → ( 𝐴𝐶 ∧ ( 𝐵 ≼ 𝒫 𝐶 → 𝒫 𝐴𝐵 ) ) )
4 3 simpld ( 𝜑𝐴𝐶 )
5 reldom Rel ≼
6 5 brrelex2i ( 𝐴𝐶𝐶 ∈ V )
7 4 6 syl ( 𝜑𝐶 ∈ V )
8 canth2g ( 𝐶 ∈ V → 𝐶 ≺ 𝒫 𝐶 )
9 sdomdom ( 𝐶 ≺ 𝒫 𝐶𝐶 ≼ 𝒫 𝐶 )
10 7 8 9 3syl ( 𝜑𝐶 ≼ 𝒫 𝐶 )
11 domtr ( ( 𝐴𝐶𝐶 ≼ 𝒫 𝐶 ) → 𝐴 ≼ 𝒫 𝐶 )
12 4 10 11 syl2anc ( 𝜑𝐴 ≼ 𝒫 𝐶 )
13 2 adantr ( ( 𝜑𝐵 ≼ 𝒫 𝒫 𝐶 ) → 𝒫 𝐶 ∈ GCH )
14 domtr ( ( ω ≼ 𝐴𝐴𝐶 ) → ω ≼ 𝐶 )
15 1 4 14 syl2anc ( 𝜑 → ω ≼ 𝐶 )
16 15 adantr ( ( 𝜑𝐵 ≼ 𝒫 𝒫 𝐶 ) → ω ≼ 𝐶 )
17 pwdjuidm ( ω ≼ 𝐶 → ( 𝒫 𝐶 ⊔ 𝒫 𝐶 ) ≈ 𝒫 𝐶 )
18 16 17 syl ( ( 𝜑𝐵 ≼ 𝒫 𝒫 𝐶 ) → ( 𝒫 𝐶 ⊔ 𝒫 𝐶 ) ≈ 𝒫 𝐶 )
19 simpr ( ( 𝜑𝐵 ≼ 𝒫 𝒫 𝐶 ) → 𝐵 ≼ 𝒫 𝒫 𝐶 )
20 gchdomtri ( ( 𝒫 𝐶 ∈ GCH ∧ ( 𝒫 𝐶 ⊔ 𝒫 𝐶 ) ≈ 𝒫 𝐶𝐵 ≼ 𝒫 𝒫 𝐶 ) → ( 𝒫 𝐶𝐵𝐵 ≼ 𝒫 𝐶 ) )
21 13 18 19 20 syl3anc ( ( 𝜑𝐵 ≼ 𝒫 𝒫 𝐶 ) → ( 𝒫 𝐶𝐵𝐵 ≼ 𝒫 𝐶 ) )
22 21 ex ( 𝜑 → ( 𝐵 ≼ 𝒫 𝒫 𝐶 → ( 𝒫 𝐶𝐵𝐵 ≼ 𝒫 𝐶 ) ) )
23 pwdom ( 𝐴𝐶 → 𝒫 𝐴 ≼ 𝒫 𝐶 )
24 domtr ( ( 𝒫 𝐴 ≼ 𝒫 𝐶 ∧ 𝒫 𝐶𝐵 ) → 𝒫 𝐴𝐵 )
25 24 ex ( 𝒫 𝐴 ≼ 𝒫 𝐶 → ( 𝒫 𝐶𝐵 → 𝒫 𝐴𝐵 ) )
26 4 23 25 3syl ( 𝜑 → ( 𝒫 𝐶𝐵 → 𝒫 𝐴𝐵 ) )
27 3 simprd ( 𝜑 → ( 𝐵 ≼ 𝒫 𝐶 → 𝒫 𝐴𝐵 ) )
28 26 27 jaod ( 𝜑 → ( ( 𝒫 𝐶𝐵𝐵 ≼ 𝒫 𝐶 ) → 𝒫 𝐴𝐵 ) )
29 22 28 syld ( 𝜑 → ( 𝐵 ≼ 𝒫 𝒫 𝐶 → 𝒫 𝐴𝐵 ) )
30 12 29 jca ( 𝜑 → ( 𝐴 ≼ 𝒫 𝐶 ∧ ( 𝐵 ≼ 𝒫 𝒫 𝐶 → 𝒫 𝐴𝐵 ) ) )