| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gchaclem.1 |  |-  ( ph -> _om ~<_ A ) | 
						
							| 2 |  | gchaclem.3 |  |-  ( ph -> ~P C e. GCH ) | 
						
							| 3 |  | gchaclem.4 |  |-  ( ph -> ( A ~<_ C /\ ( B ~<_ ~P C -> ~P A ~<_ B ) ) ) | 
						
							| 4 | 3 | simpld |  |-  ( ph -> A ~<_ C ) | 
						
							| 5 |  | reldom |  |-  Rel ~<_ | 
						
							| 6 | 5 | brrelex2i |  |-  ( A ~<_ C -> C e. _V ) | 
						
							| 7 | 4 6 | syl |  |-  ( ph -> C e. _V ) | 
						
							| 8 |  | canth2g |  |-  ( C e. _V -> C ~< ~P C ) | 
						
							| 9 |  | sdomdom |  |-  ( C ~< ~P C -> C ~<_ ~P C ) | 
						
							| 10 | 7 8 9 | 3syl |  |-  ( ph -> C ~<_ ~P C ) | 
						
							| 11 |  | domtr |  |-  ( ( A ~<_ C /\ C ~<_ ~P C ) -> A ~<_ ~P C ) | 
						
							| 12 | 4 10 11 | syl2anc |  |-  ( ph -> A ~<_ ~P C ) | 
						
							| 13 | 2 | adantr |  |-  ( ( ph /\ B ~<_ ~P ~P C ) -> ~P C e. GCH ) | 
						
							| 14 |  | domtr |  |-  ( ( _om ~<_ A /\ A ~<_ C ) -> _om ~<_ C ) | 
						
							| 15 | 1 4 14 | syl2anc |  |-  ( ph -> _om ~<_ C ) | 
						
							| 16 | 15 | adantr |  |-  ( ( ph /\ B ~<_ ~P ~P C ) -> _om ~<_ C ) | 
						
							| 17 |  | pwdjuidm |  |-  ( _om ~<_ C -> ( ~P C |_| ~P C ) ~~ ~P C ) | 
						
							| 18 | 16 17 | syl |  |-  ( ( ph /\ B ~<_ ~P ~P C ) -> ( ~P C |_| ~P C ) ~~ ~P C ) | 
						
							| 19 |  | simpr |  |-  ( ( ph /\ B ~<_ ~P ~P C ) -> B ~<_ ~P ~P C ) | 
						
							| 20 |  | gchdomtri |  |-  ( ( ~P C e. GCH /\ ( ~P C |_| ~P C ) ~~ ~P C /\ B ~<_ ~P ~P C ) -> ( ~P C ~<_ B \/ B ~<_ ~P C ) ) | 
						
							| 21 | 13 18 19 20 | syl3anc |  |-  ( ( ph /\ B ~<_ ~P ~P C ) -> ( ~P C ~<_ B \/ B ~<_ ~P C ) ) | 
						
							| 22 | 21 | ex |  |-  ( ph -> ( B ~<_ ~P ~P C -> ( ~P C ~<_ B \/ B ~<_ ~P C ) ) ) | 
						
							| 23 |  | pwdom |  |-  ( A ~<_ C -> ~P A ~<_ ~P C ) | 
						
							| 24 |  | domtr |  |-  ( ( ~P A ~<_ ~P C /\ ~P C ~<_ B ) -> ~P A ~<_ B ) | 
						
							| 25 | 24 | ex |  |-  ( ~P A ~<_ ~P C -> ( ~P C ~<_ B -> ~P A ~<_ B ) ) | 
						
							| 26 | 4 23 25 | 3syl |  |-  ( ph -> ( ~P C ~<_ B -> ~P A ~<_ B ) ) | 
						
							| 27 | 3 | simprd |  |-  ( ph -> ( B ~<_ ~P C -> ~P A ~<_ B ) ) | 
						
							| 28 | 26 27 | jaod |  |-  ( ph -> ( ( ~P C ~<_ B \/ B ~<_ ~P C ) -> ~P A ~<_ B ) ) | 
						
							| 29 | 22 28 | syld |  |-  ( ph -> ( B ~<_ ~P ~P C -> ~P A ~<_ B ) ) | 
						
							| 30 | 12 29 | jca |  |-  ( ph -> ( A ~<_ ~P C /\ ( B ~<_ ~P ~P C -> ~P A ~<_ B ) ) ) |