| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gchaclem.1 |
|- ( ph -> _om ~<_ A ) |
| 2 |
|
gchaclem.3 |
|- ( ph -> ~P C e. GCH ) |
| 3 |
|
gchaclem.4 |
|- ( ph -> ( A ~<_ C /\ ( B ~<_ ~P C -> ~P A ~<_ B ) ) ) |
| 4 |
3
|
simpld |
|- ( ph -> A ~<_ C ) |
| 5 |
|
reldom |
|- Rel ~<_ |
| 6 |
5
|
brrelex2i |
|- ( A ~<_ C -> C e. _V ) |
| 7 |
4 6
|
syl |
|- ( ph -> C e. _V ) |
| 8 |
|
canth2g |
|- ( C e. _V -> C ~< ~P C ) |
| 9 |
|
sdomdom |
|- ( C ~< ~P C -> C ~<_ ~P C ) |
| 10 |
7 8 9
|
3syl |
|- ( ph -> C ~<_ ~P C ) |
| 11 |
|
domtr |
|- ( ( A ~<_ C /\ C ~<_ ~P C ) -> A ~<_ ~P C ) |
| 12 |
4 10 11
|
syl2anc |
|- ( ph -> A ~<_ ~P C ) |
| 13 |
2
|
adantr |
|- ( ( ph /\ B ~<_ ~P ~P C ) -> ~P C e. GCH ) |
| 14 |
|
domtr |
|- ( ( _om ~<_ A /\ A ~<_ C ) -> _om ~<_ C ) |
| 15 |
1 4 14
|
syl2anc |
|- ( ph -> _om ~<_ C ) |
| 16 |
15
|
adantr |
|- ( ( ph /\ B ~<_ ~P ~P C ) -> _om ~<_ C ) |
| 17 |
|
pwdjuidm |
|- ( _om ~<_ C -> ( ~P C |_| ~P C ) ~~ ~P C ) |
| 18 |
16 17
|
syl |
|- ( ( ph /\ B ~<_ ~P ~P C ) -> ( ~P C |_| ~P C ) ~~ ~P C ) |
| 19 |
|
simpr |
|- ( ( ph /\ B ~<_ ~P ~P C ) -> B ~<_ ~P ~P C ) |
| 20 |
|
gchdomtri |
|- ( ( ~P C e. GCH /\ ( ~P C |_| ~P C ) ~~ ~P C /\ B ~<_ ~P ~P C ) -> ( ~P C ~<_ B \/ B ~<_ ~P C ) ) |
| 21 |
13 18 19 20
|
syl3anc |
|- ( ( ph /\ B ~<_ ~P ~P C ) -> ( ~P C ~<_ B \/ B ~<_ ~P C ) ) |
| 22 |
21
|
ex |
|- ( ph -> ( B ~<_ ~P ~P C -> ( ~P C ~<_ B \/ B ~<_ ~P C ) ) ) |
| 23 |
|
pwdom |
|- ( A ~<_ C -> ~P A ~<_ ~P C ) |
| 24 |
|
domtr |
|- ( ( ~P A ~<_ ~P C /\ ~P C ~<_ B ) -> ~P A ~<_ B ) |
| 25 |
24
|
ex |
|- ( ~P A ~<_ ~P C -> ( ~P C ~<_ B -> ~P A ~<_ B ) ) |
| 26 |
4 23 25
|
3syl |
|- ( ph -> ( ~P C ~<_ B -> ~P A ~<_ B ) ) |
| 27 |
3
|
simprd |
|- ( ph -> ( B ~<_ ~P C -> ~P A ~<_ B ) ) |
| 28 |
26 27
|
jaod |
|- ( ph -> ( ( ~P C ~<_ B \/ B ~<_ ~P C ) -> ~P A ~<_ B ) ) |
| 29 |
22 28
|
syld |
|- ( ph -> ( B ~<_ ~P ~P C -> ~P A ~<_ B ) ) |
| 30 |
12 29
|
jca |
|- ( ph -> ( A ~<_ ~P C /\ ( B ~<_ ~P ~P C -> ~P A ~<_ B ) ) ) |