| Step |
Hyp |
Ref |
Expression |
| 1 |
|
harcl |
|- ( har ` A ) e. On |
| 2 |
|
simp3 |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ~P A e. GCH ) |
| 3 |
|
djudoml |
|- ( ( ( har ` A ) e. On /\ ~P A e. GCH ) -> ( har ` A ) ~<_ ( ( har ` A ) |_| ~P A ) ) |
| 4 |
1 2 3
|
sylancr |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( har ` A ) ~<_ ( ( har ` A ) |_| ~P A ) ) |
| 5 |
|
domnsym |
|- ( _om ~<_ A -> -. A ~< _om ) |
| 6 |
5
|
3ad2ant1 |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> -. A ~< _om ) |
| 7 |
|
isfinite |
|- ( A e. Fin <-> A ~< _om ) |
| 8 |
6 7
|
sylnibr |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> -. A e. Fin ) |
| 9 |
|
pwfi |
|- ( A e. Fin <-> ~P A e. Fin ) |
| 10 |
8 9
|
sylnib |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> -. ~P A e. Fin ) |
| 11 |
|
djudoml |
|- ( ( ~P A e. GCH /\ ( har ` A ) e. On ) -> ~P A ~<_ ( ~P A |_| ( har ` A ) ) ) |
| 12 |
2 1 11
|
sylancl |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ~P A ~<_ ( ~P A |_| ( har ` A ) ) ) |
| 13 |
|
fvexd |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( har ` A ) e. _V ) |
| 14 |
|
djuex |
|- ( ( ~P A e. GCH /\ ( har ` A ) e. _V ) -> ( ~P A |_| ( har ` A ) ) e. _V ) |
| 15 |
2 13 14
|
syl2anc |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( ~P A |_| ( har ` A ) ) e. _V ) |
| 16 |
|
canth2g |
|- ( ( ~P A |_| ( har ` A ) ) e. _V -> ( ~P A |_| ( har ` A ) ) ~< ~P ( ~P A |_| ( har ` A ) ) ) |
| 17 |
15 16
|
syl |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( ~P A |_| ( har ` A ) ) ~< ~P ( ~P A |_| ( har ` A ) ) ) |
| 18 |
|
pwdjuen |
|- ( ( ~P A e. GCH /\ ( har ` A ) e. On ) -> ~P ( ~P A |_| ( har ` A ) ) ~~ ( ~P ~P A X. ~P ( har ` A ) ) ) |
| 19 |
2 1 18
|
sylancl |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ~P ( ~P A |_| ( har ` A ) ) ~~ ( ~P ~P A X. ~P ( har ` A ) ) ) |
| 20 |
2
|
pwexd |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ~P ~P A e. _V ) |
| 21 |
|
simp2 |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> A e. GCH ) |
| 22 |
|
harwdom |
|- ( A e. GCH -> ( har ` A ) ~<_* ~P ( A X. A ) ) |
| 23 |
|
wdompwdom |
|- ( ( har ` A ) ~<_* ~P ( A X. A ) -> ~P ( har ` A ) ~<_ ~P ~P ( A X. A ) ) |
| 24 |
21 22 23
|
3syl |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ~P ( har ` A ) ~<_ ~P ~P ( A X. A ) ) |
| 25 |
|
xpdom2g |
|- ( ( ~P ~P A e. _V /\ ~P ( har ` A ) ~<_ ~P ~P ( A X. A ) ) -> ( ~P ~P A X. ~P ( har ` A ) ) ~<_ ( ~P ~P A X. ~P ~P ( A X. A ) ) ) |
| 26 |
20 24 25
|
syl2anc |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( ~P ~P A X. ~P ( har ` A ) ) ~<_ ( ~P ~P A X. ~P ~P ( A X. A ) ) ) |
| 27 |
21 21
|
xpexd |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( A X. A ) e. _V ) |
| 28 |
27
|
pwexd |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ~P ( A X. A ) e. _V ) |
| 29 |
|
pwdjuen |
|- ( ( ~P A e. GCH /\ ~P ( A X. A ) e. _V ) -> ~P ( ~P A |_| ~P ( A X. A ) ) ~~ ( ~P ~P A X. ~P ~P ( A X. A ) ) ) |
| 30 |
2 28 29
|
syl2anc |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ~P ( ~P A |_| ~P ( A X. A ) ) ~~ ( ~P ~P A X. ~P ~P ( A X. A ) ) ) |
| 31 |
30
|
ensymd |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( ~P ~P A X. ~P ~P ( A X. A ) ) ~~ ~P ( ~P A |_| ~P ( A X. A ) ) ) |
| 32 |
|
enrefg |
|- ( ~P A e. GCH -> ~P A ~~ ~P A ) |
| 33 |
2 32
|
syl |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ~P A ~~ ~P A ) |
| 34 |
|
gchxpidm |
|- ( ( A e. GCH /\ -. A e. Fin ) -> ( A X. A ) ~~ A ) |
| 35 |
21 8 34
|
syl2anc |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( A X. A ) ~~ A ) |
| 36 |
|
pwen |
|- ( ( A X. A ) ~~ A -> ~P ( A X. A ) ~~ ~P A ) |
| 37 |
35 36
|
syl |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ~P ( A X. A ) ~~ ~P A ) |
| 38 |
|
djuen |
|- ( ( ~P A ~~ ~P A /\ ~P ( A X. A ) ~~ ~P A ) -> ( ~P A |_| ~P ( A X. A ) ) ~~ ( ~P A |_| ~P A ) ) |
| 39 |
33 37 38
|
syl2anc |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( ~P A |_| ~P ( A X. A ) ) ~~ ( ~P A |_| ~P A ) ) |
| 40 |
|
gchdjuidm |
|- ( ( ~P A e. GCH /\ -. ~P A e. Fin ) -> ( ~P A |_| ~P A ) ~~ ~P A ) |
| 41 |
2 10 40
|
syl2anc |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( ~P A |_| ~P A ) ~~ ~P A ) |
| 42 |
|
entr |
|- ( ( ( ~P A |_| ~P ( A X. A ) ) ~~ ( ~P A |_| ~P A ) /\ ( ~P A |_| ~P A ) ~~ ~P A ) -> ( ~P A |_| ~P ( A X. A ) ) ~~ ~P A ) |
| 43 |
39 41 42
|
syl2anc |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( ~P A |_| ~P ( A X. A ) ) ~~ ~P A ) |
| 44 |
|
pwen |
|- ( ( ~P A |_| ~P ( A X. A ) ) ~~ ~P A -> ~P ( ~P A |_| ~P ( A X. A ) ) ~~ ~P ~P A ) |
| 45 |
43 44
|
syl |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ~P ( ~P A |_| ~P ( A X. A ) ) ~~ ~P ~P A ) |
| 46 |
|
entr |
|- ( ( ( ~P ~P A X. ~P ~P ( A X. A ) ) ~~ ~P ( ~P A |_| ~P ( A X. A ) ) /\ ~P ( ~P A |_| ~P ( A X. A ) ) ~~ ~P ~P A ) -> ( ~P ~P A X. ~P ~P ( A X. A ) ) ~~ ~P ~P A ) |
| 47 |
31 45 46
|
syl2anc |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( ~P ~P A X. ~P ~P ( A X. A ) ) ~~ ~P ~P A ) |
| 48 |
|
domentr |
|- ( ( ( ~P ~P A X. ~P ( har ` A ) ) ~<_ ( ~P ~P A X. ~P ~P ( A X. A ) ) /\ ( ~P ~P A X. ~P ~P ( A X. A ) ) ~~ ~P ~P A ) -> ( ~P ~P A X. ~P ( har ` A ) ) ~<_ ~P ~P A ) |
| 49 |
26 47 48
|
syl2anc |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( ~P ~P A X. ~P ( har ` A ) ) ~<_ ~P ~P A ) |
| 50 |
|
endomtr |
|- ( ( ~P ( ~P A |_| ( har ` A ) ) ~~ ( ~P ~P A X. ~P ( har ` A ) ) /\ ( ~P ~P A X. ~P ( har ` A ) ) ~<_ ~P ~P A ) -> ~P ( ~P A |_| ( har ` A ) ) ~<_ ~P ~P A ) |
| 51 |
19 49 50
|
syl2anc |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ~P ( ~P A |_| ( har ` A ) ) ~<_ ~P ~P A ) |
| 52 |
|
sdomdomtr |
|- ( ( ( ~P A |_| ( har ` A ) ) ~< ~P ( ~P A |_| ( har ` A ) ) /\ ~P ( ~P A |_| ( har ` A ) ) ~<_ ~P ~P A ) -> ( ~P A |_| ( har ` A ) ) ~< ~P ~P A ) |
| 53 |
17 51 52
|
syl2anc |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( ~P A |_| ( har ` A ) ) ~< ~P ~P A ) |
| 54 |
|
gchen1 |
|- ( ( ( ~P A e. GCH /\ -. ~P A e. Fin ) /\ ( ~P A ~<_ ( ~P A |_| ( har ` A ) ) /\ ( ~P A |_| ( har ` A ) ) ~< ~P ~P A ) ) -> ~P A ~~ ( ~P A |_| ( har ` A ) ) ) |
| 55 |
2 10 12 53 54
|
syl22anc |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ~P A ~~ ( ~P A |_| ( har ` A ) ) ) |
| 56 |
|
djucomen |
|- ( ( ~P A e. GCH /\ ( har ` A ) e. _V ) -> ( ~P A |_| ( har ` A ) ) ~~ ( ( har ` A ) |_| ~P A ) ) |
| 57 |
2 13 56
|
syl2anc |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( ~P A |_| ( har ` A ) ) ~~ ( ( har ` A ) |_| ~P A ) ) |
| 58 |
|
entr |
|- ( ( ~P A ~~ ( ~P A |_| ( har ` A ) ) /\ ( ~P A |_| ( har ` A ) ) ~~ ( ( har ` A ) |_| ~P A ) ) -> ~P A ~~ ( ( har ` A ) |_| ~P A ) ) |
| 59 |
55 57 58
|
syl2anc |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ~P A ~~ ( ( har ` A ) |_| ~P A ) ) |
| 60 |
59
|
ensymd |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( ( har ` A ) |_| ~P A ) ~~ ~P A ) |
| 61 |
|
domentr |
|- ( ( ( har ` A ) ~<_ ( ( har ` A ) |_| ~P A ) /\ ( ( har ` A ) |_| ~P A ) ~~ ~P A ) -> ( har ` A ) ~<_ ~P A ) |
| 62 |
4 60 61
|
syl2anc |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( har ` A ) ~<_ ~P A ) |
| 63 |
|
gchdjuidm |
|- ( ( A e. GCH /\ -. A e. Fin ) -> ( A |_| A ) ~~ A ) |
| 64 |
21 8 63
|
syl2anc |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( A |_| A ) ~~ A ) |
| 65 |
|
pwen |
|- ( ( A |_| A ) ~~ A -> ~P ( A |_| A ) ~~ ~P A ) |
| 66 |
64 65
|
syl |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ~P ( A |_| A ) ~~ ~P A ) |
| 67 |
|
djudoml |
|- ( ( A e. GCH /\ ( har ` A ) e. On ) -> A ~<_ ( A |_| ( har ` A ) ) ) |
| 68 |
21 1 67
|
sylancl |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> A ~<_ ( A |_| ( har ` A ) ) ) |
| 69 |
|
harndom |
|- -. ( har ` A ) ~<_ A |
| 70 |
|
djudoml |
|- ( ( ( har ` A ) e. On /\ A e. GCH ) -> ( har ` A ) ~<_ ( ( har ` A ) |_| A ) ) |
| 71 |
1 21 70
|
sylancr |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( har ` A ) ~<_ ( ( har ` A ) |_| A ) ) |
| 72 |
|
djucomen |
|- ( ( ( har ` A ) e. On /\ A e. GCH ) -> ( ( har ` A ) |_| A ) ~~ ( A |_| ( har ` A ) ) ) |
| 73 |
1 21 72
|
sylancr |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( ( har ` A ) |_| A ) ~~ ( A |_| ( har ` A ) ) ) |
| 74 |
|
domentr |
|- ( ( ( har ` A ) ~<_ ( ( har ` A ) |_| A ) /\ ( ( har ` A ) |_| A ) ~~ ( A |_| ( har ` A ) ) ) -> ( har ` A ) ~<_ ( A |_| ( har ` A ) ) ) |
| 75 |
71 73 74
|
syl2anc |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( har ` A ) ~<_ ( A |_| ( har ` A ) ) ) |
| 76 |
|
domen2 |
|- ( A ~~ ( A |_| ( har ` A ) ) -> ( ( har ` A ) ~<_ A <-> ( har ` A ) ~<_ ( A |_| ( har ` A ) ) ) ) |
| 77 |
75 76
|
syl5ibrcom |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( A ~~ ( A |_| ( har ` A ) ) -> ( har ` A ) ~<_ A ) ) |
| 78 |
69 77
|
mtoi |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> -. A ~~ ( A |_| ( har ` A ) ) ) |
| 79 |
|
brsdom |
|- ( A ~< ( A |_| ( har ` A ) ) <-> ( A ~<_ ( A |_| ( har ` A ) ) /\ -. A ~~ ( A |_| ( har ` A ) ) ) ) |
| 80 |
68 78 79
|
sylanbrc |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> A ~< ( A |_| ( har ` A ) ) ) |
| 81 |
|
canth2g |
|- ( A e. GCH -> A ~< ~P A ) |
| 82 |
|
sdomdom |
|- ( A ~< ~P A -> A ~<_ ~P A ) |
| 83 |
21 81 82
|
3syl |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> A ~<_ ~P A ) |
| 84 |
|
djudom1 |
|- ( ( A ~<_ ~P A /\ ( har ` A ) e. On ) -> ( A |_| ( har ` A ) ) ~<_ ( ~P A |_| ( har ` A ) ) ) |
| 85 |
83 1 84
|
sylancl |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( A |_| ( har ` A ) ) ~<_ ( ~P A |_| ( har ` A ) ) ) |
| 86 |
|
djudom2 |
|- ( ( ( har ` A ) ~<_ ~P A /\ ~P A e. GCH ) -> ( ~P A |_| ( har ` A ) ) ~<_ ( ~P A |_| ~P A ) ) |
| 87 |
62 2 86
|
syl2anc |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( ~P A |_| ( har ` A ) ) ~<_ ( ~P A |_| ~P A ) ) |
| 88 |
|
domtr |
|- ( ( ( A |_| ( har ` A ) ) ~<_ ( ~P A |_| ( har ` A ) ) /\ ( ~P A |_| ( har ` A ) ) ~<_ ( ~P A |_| ~P A ) ) -> ( A |_| ( har ` A ) ) ~<_ ( ~P A |_| ~P A ) ) |
| 89 |
85 87 88
|
syl2anc |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( A |_| ( har ` A ) ) ~<_ ( ~P A |_| ~P A ) ) |
| 90 |
|
domentr |
|- ( ( ( A |_| ( har ` A ) ) ~<_ ( ~P A |_| ~P A ) /\ ( ~P A |_| ~P A ) ~~ ~P A ) -> ( A |_| ( har ` A ) ) ~<_ ~P A ) |
| 91 |
89 41 90
|
syl2anc |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( A |_| ( har ` A ) ) ~<_ ~P A ) |
| 92 |
|
gchen2 |
|- ( ( ( A e. GCH /\ -. A e. Fin ) /\ ( A ~< ( A |_| ( har ` A ) ) /\ ( A |_| ( har ` A ) ) ~<_ ~P A ) ) -> ( A |_| ( har ` A ) ) ~~ ~P A ) |
| 93 |
21 8 80 91 92
|
syl22anc |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( A |_| ( har ` A ) ) ~~ ~P A ) |
| 94 |
93
|
ensymd |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ~P A ~~ ( A |_| ( har ` A ) ) ) |
| 95 |
|
entr |
|- ( ( ~P ( A |_| A ) ~~ ~P A /\ ~P A ~~ ( A |_| ( har ` A ) ) ) -> ~P ( A |_| A ) ~~ ( A |_| ( har ` A ) ) ) |
| 96 |
66 94 95
|
syl2anc |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ~P ( A |_| A ) ~~ ( A |_| ( har ` A ) ) ) |
| 97 |
|
endom |
|- ( ~P ( A |_| A ) ~~ ( A |_| ( har ` A ) ) -> ~P ( A |_| A ) ~<_ ( A |_| ( har ` A ) ) ) |
| 98 |
|
pwdjudom |
|- ( ~P ( A |_| A ) ~<_ ( A |_| ( har ` A ) ) -> ~P A ~<_ ( har ` A ) ) |
| 99 |
96 97 98
|
3syl |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ~P A ~<_ ( har ` A ) ) |
| 100 |
|
sbth |
|- ( ( ( har ` A ) ~<_ ~P A /\ ~P A ~<_ ( har ` A ) ) -> ( har ` A ) ~~ ~P A ) |
| 101 |
62 99 100
|
syl2anc |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( har ` A ) ~~ ~P A ) |