| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
|- ( ( A e. GCH /\ -. A e. Fin ) -> A e. GCH ) |
| 2 |
|
djudoml |
|- ( ( A e. GCH /\ A e. GCH ) -> A ~<_ ( A |_| A ) ) |
| 3 |
1 1 2
|
syl2anc |
|- ( ( A e. GCH /\ -. A e. Fin ) -> A ~<_ ( A |_| A ) ) |
| 4 |
|
canth2g |
|- ( A e. GCH -> A ~< ~P A ) |
| 5 |
4
|
adantr |
|- ( ( A e. GCH /\ -. A e. Fin ) -> A ~< ~P A ) |
| 6 |
|
sdomdom |
|- ( A ~< ~P A -> A ~<_ ~P A ) |
| 7 |
5 6
|
syl |
|- ( ( A e. GCH /\ -. A e. Fin ) -> A ~<_ ~P A ) |
| 8 |
|
reldom |
|- Rel ~<_ |
| 9 |
8
|
brrelex1i |
|- ( A ~<_ ~P A -> A e. _V ) |
| 10 |
|
djudom1 |
|- ( ( A ~<_ ~P A /\ A e. _V ) -> ( A |_| A ) ~<_ ( ~P A |_| A ) ) |
| 11 |
9 10
|
mpdan |
|- ( A ~<_ ~P A -> ( A |_| A ) ~<_ ( ~P A |_| A ) ) |
| 12 |
9
|
pwexd |
|- ( A ~<_ ~P A -> ~P A e. _V ) |
| 13 |
|
djudom2 |
|- ( ( A ~<_ ~P A /\ ~P A e. _V ) -> ( ~P A |_| A ) ~<_ ( ~P A |_| ~P A ) ) |
| 14 |
12 13
|
mpdan |
|- ( A ~<_ ~P A -> ( ~P A |_| A ) ~<_ ( ~P A |_| ~P A ) ) |
| 15 |
|
domtr |
|- ( ( ( A |_| A ) ~<_ ( ~P A |_| A ) /\ ( ~P A |_| A ) ~<_ ( ~P A |_| ~P A ) ) -> ( A |_| A ) ~<_ ( ~P A |_| ~P A ) ) |
| 16 |
11 14 15
|
syl2anc |
|- ( A ~<_ ~P A -> ( A |_| A ) ~<_ ( ~P A |_| ~P A ) ) |
| 17 |
7 16
|
syl |
|- ( ( A e. GCH /\ -. A e. Fin ) -> ( A |_| A ) ~<_ ( ~P A |_| ~P A ) ) |
| 18 |
|
pwdju1 |
|- ( A e. GCH -> ( ~P A |_| ~P A ) ~~ ~P ( A |_| 1o ) ) |
| 19 |
18
|
adantr |
|- ( ( A e. GCH /\ -. A e. Fin ) -> ( ~P A |_| ~P A ) ~~ ~P ( A |_| 1o ) ) |
| 20 |
|
gchdju1 |
|- ( ( A e. GCH /\ -. A e. Fin ) -> ( A |_| 1o ) ~~ A ) |
| 21 |
|
pwen |
|- ( ( A |_| 1o ) ~~ A -> ~P ( A |_| 1o ) ~~ ~P A ) |
| 22 |
20 21
|
syl |
|- ( ( A e. GCH /\ -. A e. Fin ) -> ~P ( A |_| 1o ) ~~ ~P A ) |
| 23 |
|
entr |
|- ( ( ( ~P A |_| ~P A ) ~~ ~P ( A |_| 1o ) /\ ~P ( A |_| 1o ) ~~ ~P A ) -> ( ~P A |_| ~P A ) ~~ ~P A ) |
| 24 |
19 22 23
|
syl2anc |
|- ( ( A e. GCH /\ -. A e. Fin ) -> ( ~P A |_| ~P A ) ~~ ~P A ) |
| 25 |
|
domentr |
|- ( ( ( A |_| A ) ~<_ ( ~P A |_| ~P A ) /\ ( ~P A |_| ~P A ) ~~ ~P A ) -> ( A |_| A ) ~<_ ~P A ) |
| 26 |
17 24 25
|
syl2anc |
|- ( ( A e. GCH /\ -. A e. Fin ) -> ( A |_| A ) ~<_ ~P A ) |
| 27 |
|
gchinf |
|- ( ( A e. GCH /\ -. A e. Fin ) -> _om ~<_ A ) |
| 28 |
|
pwdjundom |
|- ( _om ~<_ A -> -. ~P A ~<_ ( A |_| A ) ) |
| 29 |
27 28
|
syl |
|- ( ( A e. GCH /\ -. A e. Fin ) -> -. ~P A ~<_ ( A |_| A ) ) |
| 30 |
|
ensym |
|- ( ( A |_| A ) ~~ ~P A -> ~P A ~~ ( A |_| A ) ) |
| 31 |
|
endom |
|- ( ~P A ~~ ( A |_| A ) -> ~P A ~<_ ( A |_| A ) ) |
| 32 |
30 31
|
syl |
|- ( ( A |_| A ) ~~ ~P A -> ~P A ~<_ ( A |_| A ) ) |
| 33 |
29 32
|
nsyl |
|- ( ( A e. GCH /\ -. A e. Fin ) -> -. ( A |_| A ) ~~ ~P A ) |
| 34 |
|
brsdom |
|- ( ( A |_| A ) ~< ~P A <-> ( ( A |_| A ) ~<_ ~P A /\ -. ( A |_| A ) ~~ ~P A ) ) |
| 35 |
26 33 34
|
sylanbrc |
|- ( ( A e. GCH /\ -. A e. Fin ) -> ( A |_| A ) ~< ~P A ) |
| 36 |
3 35
|
jca |
|- ( ( A e. GCH /\ -. A e. Fin ) -> ( A ~<_ ( A |_| A ) /\ ( A |_| A ) ~< ~P A ) ) |
| 37 |
|
gchen1 |
|- ( ( ( A e. GCH /\ -. A e. Fin ) /\ ( A ~<_ ( A |_| A ) /\ ( A |_| A ) ~< ~P A ) ) -> A ~~ ( A |_| A ) ) |
| 38 |
36 37
|
mpdan |
|- ( ( A e. GCH /\ -. A e. Fin ) -> A ~~ ( A |_| A ) ) |
| 39 |
38
|
ensymd |
|- ( ( A e. GCH /\ -. A e. Fin ) -> ( A |_| A ) ~~ A ) |