Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → 𝐴 ∈ GCH ) |
2 |
|
djudoml |
⊢ ( ( 𝐴 ∈ GCH ∧ 𝐴 ∈ GCH ) → 𝐴 ≼ ( 𝐴 ⊔ 𝐴 ) ) |
3 |
1 1 2
|
syl2anc |
⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → 𝐴 ≼ ( 𝐴 ⊔ 𝐴 ) ) |
4 |
|
canth2g |
⊢ ( 𝐴 ∈ GCH → 𝐴 ≺ 𝒫 𝐴 ) |
5 |
4
|
adantr |
⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → 𝐴 ≺ 𝒫 𝐴 ) |
6 |
|
sdomdom |
⊢ ( 𝐴 ≺ 𝒫 𝐴 → 𝐴 ≼ 𝒫 𝐴 ) |
7 |
5 6
|
syl |
⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → 𝐴 ≼ 𝒫 𝐴 ) |
8 |
|
reldom |
⊢ Rel ≼ |
9 |
8
|
brrelex1i |
⊢ ( 𝐴 ≼ 𝒫 𝐴 → 𝐴 ∈ V ) |
10 |
|
djudom1 |
⊢ ( ( 𝐴 ≼ 𝒫 𝐴 ∧ 𝐴 ∈ V ) → ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝒫 𝐴 ⊔ 𝐴 ) ) |
11 |
9 10
|
mpdan |
⊢ ( 𝐴 ≼ 𝒫 𝐴 → ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝒫 𝐴 ⊔ 𝐴 ) ) |
12 |
9
|
pwexd |
⊢ ( 𝐴 ≼ 𝒫 𝐴 → 𝒫 𝐴 ∈ V ) |
13 |
|
djudom2 |
⊢ ( ( 𝐴 ≼ 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ V ) → ( 𝒫 𝐴 ⊔ 𝐴 ) ≼ ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ) |
14 |
12 13
|
mpdan |
⊢ ( 𝐴 ≼ 𝒫 𝐴 → ( 𝒫 𝐴 ⊔ 𝐴 ) ≼ ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ) |
15 |
|
domtr |
⊢ ( ( ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝒫 𝐴 ⊔ 𝐴 ) ∧ ( 𝒫 𝐴 ⊔ 𝐴 ) ≼ ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ) → ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ) |
16 |
11 14 15
|
syl2anc |
⊢ ( 𝐴 ≼ 𝒫 𝐴 → ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ) |
17 |
7 16
|
syl |
⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ) |
18 |
|
pwdju1 |
⊢ ( 𝐴 ∈ GCH → ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ≈ 𝒫 ( 𝐴 ⊔ 1o ) ) |
19 |
18
|
adantr |
⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ≈ 𝒫 ( 𝐴 ⊔ 1o ) ) |
20 |
|
gchdju1 |
⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ( 𝐴 ⊔ 1o ) ≈ 𝐴 ) |
21 |
|
pwen |
⊢ ( ( 𝐴 ⊔ 1o ) ≈ 𝐴 → 𝒫 ( 𝐴 ⊔ 1o ) ≈ 𝒫 𝐴 ) |
22 |
20 21
|
syl |
⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → 𝒫 ( 𝐴 ⊔ 1o ) ≈ 𝒫 𝐴 ) |
23 |
|
entr |
⊢ ( ( ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ≈ 𝒫 ( 𝐴 ⊔ 1o ) ∧ 𝒫 ( 𝐴 ⊔ 1o ) ≈ 𝒫 𝐴 ) → ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ≈ 𝒫 𝐴 ) |
24 |
19 22 23
|
syl2anc |
⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ≈ 𝒫 𝐴 ) |
25 |
|
domentr |
⊢ ( ( ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ∧ ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ≈ 𝒫 𝐴 ) → ( 𝐴 ⊔ 𝐴 ) ≼ 𝒫 𝐴 ) |
26 |
17 24 25
|
syl2anc |
⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ( 𝐴 ⊔ 𝐴 ) ≼ 𝒫 𝐴 ) |
27 |
|
gchinf |
⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ω ≼ 𝐴 ) |
28 |
|
pwdjundom |
⊢ ( ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ ( 𝐴 ⊔ 𝐴 ) ) |
29 |
27 28
|
syl |
⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ¬ 𝒫 𝐴 ≼ ( 𝐴 ⊔ 𝐴 ) ) |
30 |
|
ensym |
⊢ ( ( 𝐴 ⊔ 𝐴 ) ≈ 𝒫 𝐴 → 𝒫 𝐴 ≈ ( 𝐴 ⊔ 𝐴 ) ) |
31 |
|
endom |
⊢ ( 𝒫 𝐴 ≈ ( 𝐴 ⊔ 𝐴 ) → 𝒫 𝐴 ≼ ( 𝐴 ⊔ 𝐴 ) ) |
32 |
30 31
|
syl |
⊢ ( ( 𝐴 ⊔ 𝐴 ) ≈ 𝒫 𝐴 → 𝒫 𝐴 ≼ ( 𝐴 ⊔ 𝐴 ) ) |
33 |
29 32
|
nsyl |
⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ¬ ( 𝐴 ⊔ 𝐴 ) ≈ 𝒫 𝐴 ) |
34 |
|
brsdom |
⊢ ( ( 𝐴 ⊔ 𝐴 ) ≺ 𝒫 𝐴 ↔ ( ( 𝐴 ⊔ 𝐴 ) ≼ 𝒫 𝐴 ∧ ¬ ( 𝐴 ⊔ 𝐴 ) ≈ 𝒫 𝐴 ) ) |
35 |
26 33 34
|
sylanbrc |
⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ( 𝐴 ⊔ 𝐴 ) ≺ 𝒫 𝐴 ) |
36 |
3 35
|
jca |
⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ( 𝐴 ≼ ( 𝐴 ⊔ 𝐴 ) ∧ ( 𝐴 ⊔ 𝐴 ) ≺ 𝒫 𝐴 ) ) |
37 |
|
gchen1 |
⊢ ( ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) ∧ ( 𝐴 ≼ ( 𝐴 ⊔ 𝐴 ) ∧ ( 𝐴 ⊔ 𝐴 ) ≺ 𝒫 𝐴 ) ) → 𝐴 ≈ ( 𝐴 ⊔ 𝐴 ) ) |
38 |
36 37
|
mpdan |
⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → 𝐴 ≈ ( 𝐴 ⊔ 𝐴 ) ) |
39 |
38
|
ensymd |
⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ) |