| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0ex |
⊢ ∅ ∈ V |
| 2 |
1
|
a1i |
⊢ ( ¬ 𝐴 ∈ Fin → ∅ ∈ V ) |
| 3 |
|
xpsneng |
⊢ ( ( 𝐴 ∈ GCH ∧ ∅ ∈ V ) → ( 𝐴 × { ∅ } ) ≈ 𝐴 ) |
| 4 |
2 3
|
sylan2 |
⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ( 𝐴 × { ∅ } ) ≈ 𝐴 ) |
| 5 |
4
|
ensymd |
⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → 𝐴 ≈ ( 𝐴 × { ∅ } ) ) |
| 6 |
|
df1o2 |
⊢ 1o = { ∅ } |
| 7 |
|
id |
⊢ ( 𝐴 = ∅ → 𝐴 = ∅ ) |
| 8 |
|
0fi |
⊢ ∅ ∈ Fin |
| 9 |
7 8
|
eqeltrdi |
⊢ ( 𝐴 = ∅ → 𝐴 ∈ Fin ) |
| 10 |
9
|
necon3bi |
⊢ ( ¬ 𝐴 ∈ Fin → 𝐴 ≠ ∅ ) |
| 11 |
10
|
adantl |
⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → 𝐴 ≠ ∅ ) |
| 12 |
|
0sdomg |
⊢ ( 𝐴 ∈ GCH → ( ∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ( ∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
| 14 |
11 13
|
mpbird |
⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ∅ ≺ 𝐴 ) |
| 15 |
|
0sdom1dom |
⊢ ( ∅ ≺ 𝐴 ↔ 1o ≼ 𝐴 ) |
| 16 |
14 15
|
sylib |
⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → 1o ≼ 𝐴 ) |
| 17 |
6 16
|
eqbrtrrid |
⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → { ∅ } ≼ 𝐴 ) |
| 18 |
|
xpdom2g |
⊢ ( ( 𝐴 ∈ GCH ∧ { ∅ } ≼ 𝐴 ) → ( 𝐴 × { ∅ } ) ≼ ( 𝐴 × 𝐴 ) ) |
| 19 |
17 18
|
syldan |
⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ( 𝐴 × { ∅ } ) ≼ ( 𝐴 × 𝐴 ) ) |
| 20 |
|
endomtr |
⊢ ( ( 𝐴 ≈ ( 𝐴 × { ∅ } ) ∧ ( 𝐴 × { ∅ } ) ≼ ( 𝐴 × 𝐴 ) ) → 𝐴 ≼ ( 𝐴 × 𝐴 ) ) |
| 21 |
5 19 20
|
syl2anc |
⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → 𝐴 ≼ ( 𝐴 × 𝐴 ) ) |
| 22 |
|
canth2g |
⊢ ( 𝐴 ∈ GCH → 𝐴 ≺ 𝒫 𝐴 ) |
| 23 |
22
|
adantr |
⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → 𝐴 ≺ 𝒫 𝐴 ) |
| 24 |
|
sdomdom |
⊢ ( 𝐴 ≺ 𝒫 𝐴 → 𝐴 ≼ 𝒫 𝐴 ) |
| 25 |
23 24
|
syl |
⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → 𝐴 ≼ 𝒫 𝐴 ) |
| 26 |
|
xpdom1g |
⊢ ( ( 𝐴 ∈ GCH ∧ 𝐴 ≼ 𝒫 𝐴 ) → ( 𝐴 × 𝐴 ) ≼ ( 𝒫 𝐴 × 𝐴 ) ) |
| 27 |
25 26
|
syldan |
⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ( 𝐴 × 𝐴 ) ≼ ( 𝒫 𝐴 × 𝐴 ) ) |
| 28 |
|
pwexg |
⊢ ( 𝐴 ∈ GCH → 𝒫 𝐴 ∈ V ) |
| 29 |
28
|
adantr |
⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → 𝒫 𝐴 ∈ V ) |
| 30 |
|
xpdom2g |
⊢ ( ( 𝒫 𝐴 ∈ V ∧ 𝐴 ≼ 𝒫 𝐴 ) → ( 𝒫 𝐴 × 𝐴 ) ≼ ( 𝒫 𝐴 × 𝒫 𝐴 ) ) |
| 31 |
29 25 30
|
syl2anc |
⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ( 𝒫 𝐴 × 𝐴 ) ≼ ( 𝒫 𝐴 × 𝒫 𝐴 ) ) |
| 32 |
|
domtr |
⊢ ( ( ( 𝐴 × 𝐴 ) ≼ ( 𝒫 𝐴 × 𝐴 ) ∧ ( 𝒫 𝐴 × 𝐴 ) ≼ ( 𝒫 𝐴 × 𝒫 𝐴 ) ) → ( 𝐴 × 𝐴 ) ≼ ( 𝒫 𝐴 × 𝒫 𝐴 ) ) |
| 33 |
27 31 32
|
syl2anc |
⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ( 𝐴 × 𝐴 ) ≼ ( 𝒫 𝐴 × 𝒫 𝐴 ) ) |
| 34 |
|
simpl |
⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → 𝐴 ∈ GCH ) |
| 35 |
|
pwdjuen |
⊢ ( ( 𝐴 ∈ GCH ∧ 𝐴 ∈ GCH ) → 𝒫 ( 𝐴 ⊔ 𝐴 ) ≈ ( 𝒫 𝐴 × 𝒫 𝐴 ) ) |
| 36 |
34 35
|
syldan |
⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → 𝒫 ( 𝐴 ⊔ 𝐴 ) ≈ ( 𝒫 𝐴 × 𝒫 𝐴 ) ) |
| 37 |
36
|
ensymd |
⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ( 𝒫 𝐴 × 𝒫 𝐴 ) ≈ 𝒫 ( 𝐴 ⊔ 𝐴 ) ) |
| 38 |
|
gchdjuidm |
⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ) |
| 39 |
|
pwen |
⊢ ( ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 → 𝒫 ( 𝐴 ⊔ 𝐴 ) ≈ 𝒫 𝐴 ) |
| 40 |
38 39
|
syl |
⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → 𝒫 ( 𝐴 ⊔ 𝐴 ) ≈ 𝒫 𝐴 ) |
| 41 |
|
entr |
⊢ ( ( ( 𝒫 𝐴 × 𝒫 𝐴 ) ≈ 𝒫 ( 𝐴 ⊔ 𝐴 ) ∧ 𝒫 ( 𝐴 ⊔ 𝐴 ) ≈ 𝒫 𝐴 ) → ( 𝒫 𝐴 × 𝒫 𝐴 ) ≈ 𝒫 𝐴 ) |
| 42 |
37 40 41
|
syl2anc |
⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ( 𝒫 𝐴 × 𝒫 𝐴 ) ≈ 𝒫 𝐴 ) |
| 43 |
|
domentr |
⊢ ( ( ( 𝐴 × 𝐴 ) ≼ ( 𝒫 𝐴 × 𝒫 𝐴 ) ∧ ( 𝒫 𝐴 × 𝒫 𝐴 ) ≈ 𝒫 𝐴 ) → ( 𝐴 × 𝐴 ) ≼ 𝒫 𝐴 ) |
| 44 |
33 42 43
|
syl2anc |
⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ( 𝐴 × 𝐴 ) ≼ 𝒫 𝐴 ) |
| 45 |
|
gchinf |
⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ω ≼ 𝐴 ) |
| 46 |
|
pwxpndom |
⊢ ( ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ ( 𝐴 × 𝐴 ) ) |
| 47 |
45 46
|
syl |
⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ¬ 𝒫 𝐴 ≼ ( 𝐴 × 𝐴 ) ) |
| 48 |
|
ensym |
⊢ ( ( 𝐴 × 𝐴 ) ≈ 𝒫 𝐴 → 𝒫 𝐴 ≈ ( 𝐴 × 𝐴 ) ) |
| 49 |
|
endom |
⊢ ( 𝒫 𝐴 ≈ ( 𝐴 × 𝐴 ) → 𝒫 𝐴 ≼ ( 𝐴 × 𝐴 ) ) |
| 50 |
48 49
|
syl |
⊢ ( ( 𝐴 × 𝐴 ) ≈ 𝒫 𝐴 → 𝒫 𝐴 ≼ ( 𝐴 × 𝐴 ) ) |
| 51 |
47 50
|
nsyl |
⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ¬ ( 𝐴 × 𝐴 ) ≈ 𝒫 𝐴 ) |
| 52 |
|
brsdom |
⊢ ( ( 𝐴 × 𝐴 ) ≺ 𝒫 𝐴 ↔ ( ( 𝐴 × 𝐴 ) ≼ 𝒫 𝐴 ∧ ¬ ( 𝐴 × 𝐴 ) ≈ 𝒫 𝐴 ) ) |
| 53 |
44 51 52
|
sylanbrc |
⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ( 𝐴 × 𝐴 ) ≺ 𝒫 𝐴 ) |
| 54 |
21 53
|
jca |
⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ( 𝐴 ≼ ( 𝐴 × 𝐴 ) ∧ ( 𝐴 × 𝐴 ) ≺ 𝒫 𝐴 ) ) |
| 55 |
|
gchen1 |
⊢ ( ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) ∧ ( 𝐴 ≼ ( 𝐴 × 𝐴 ) ∧ ( 𝐴 × 𝐴 ) ≺ 𝒫 𝐴 ) ) → 𝐴 ≈ ( 𝐴 × 𝐴 ) ) |
| 56 |
54 55
|
mpdan |
⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → 𝐴 ≈ ( 𝐴 × 𝐴 ) ) |
| 57 |
56
|
ensymd |
⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ( 𝐴 × 𝐴 ) ≈ 𝐴 ) |