| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							simpl2 | 
							⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  𝐴  ∈  GCH )  | 
						
						
							| 2 | 
							
								1
							 | 
							pwexd | 
							⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  𝒫  𝐴  ∈  V )  | 
						
						
							| 3 | 
							
								
							 | 
							simpl3 | 
							⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  𝐵  ∈  GCH )  | 
						
						
							| 4 | 
							
								
							 | 
							djudoml | 
							⊢ ( ( 𝒫  𝐴  ∈  V  ∧  𝐵  ∈  GCH )  →  𝒫  𝐴  ≼  ( 𝒫  𝐴  ⊔  𝐵 ) )  | 
						
						
							| 5 | 
							
								2 3 4
							 | 
							syl2anc | 
							⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  𝒫  𝐴  ≼  ( 𝒫  𝐴  ⊔  𝐵 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							domen2 | 
							⊢ ( 𝐵  ≈  ( 𝒫  𝐴  ⊔  𝐵 )  →  ( 𝒫  𝐴  ≼  𝐵  ↔  𝒫  𝐴  ≼  ( 𝒫  𝐴  ⊔  𝐵 ) ) )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							syl5ibrcom | 
							⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  ( 𝐵  ≈  ( 𝒫  𝐴  ⊔  𝐵 )  →  𝒫  𝐴  ≼  𝐵 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							djucomen | 
							⊢ ( ( 𝐵  ∈  GCH  ∧  𝒫  𝐴  ∈  V )  →  ( 𝐵  ⊔  𝒫  𝐴 )  ≈  ( 𝒫  𝐴  ⊔  𝐵 ) )  | 
						
						
							| 9 | 
							
								3 2 8
							 | 
							syl2anc | 
							⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  ( 𝐵  ⊔  𝒫  𝐴 )  ≈  ( 𝒫  𝐴  ⊔  𝐵 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							entr | 
							⊢ ( ( ( 𝐵  ⊔  𝒫  𝐴 )  ≈  ( 𝒫  𝐴  ⊔  𝐵 )  ∧  ( 𝒫  𝐴  ⊔  𝐵 )  ≈  𝒫  𝐵 )  →  ( 𝐵  ⊔  𝒫  𝐴 )  ≈  𝒫  𝐵 )  | 
						
						
							| 11 | 
							
								10
							 | 
							ex | 
							⊢ ( ( 𝐵  ⊔  𝒫  𝐴 )  ≈  ( 𝒫  𝐴  ⊔  𝐵 )  →  ( ( 𝒫  𝐴  ⊔  𝐵 )  ≈  𝒫  𝐵  →  ( 𝐵  ⊔  𝒫  𝐴 )  ≈  𝒫  𝐵 ) )  | 
						
						
							| 12 | 
							
								9 11
							 | 
							syl | 
							⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  ( ( 𝒫  𝐴  ⊔  𝐵 )  ≈  𝒫  𝐵  →  ( 𝐵  ⊔  𝒫  𝐴 )  ≈  𝒫  𝐵 ) )  | 
						
						
							| 13 | 
							
								
							 | 
							ensym | 
							⊢ ( ( 𝐵  ⊔  𝒫  𝐴 )  ≈  𝒫  𝐵  →  𝒫  𝐵  ≈  ( 𝐵  ⊔  𝒫  𝐴 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							endom | 
							⊢ ( 𝒫  𝐵  ≈  ( 𝐵  ⊔  𝒫  𝐴 )  →  𝒫  𝐵  ≼  ( 𝐵  ⊔  𝒫  𝐴 ) )  | 
						
						
							| 15 | 
							
								13 14
							 | 
							syl | 
							⊢ ( ( 𝐵  ⊔  𝒫  𝐴 )  ≈  𝒫  𝐵  →  𝒫  𝐵  ≼  ( 𝐵  ⊔  𝒫  𝐴 ) )  | 
						
						
							| 16 | 
							
								12 15
							 | 
							syl6 | 
							⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  ( ( 𝒫  𝐴  ⊔  𝐵 )  ≈  𝒫  𝐵  →  𝒫  𝐵  ≼  ( 𝐵  ⊔  𝒫  𝐴 ) ) )  | 
						
						
							| 17 | 
							
								
							 | 
							domsdomtr | 
							⊢ ( ( ω  ≼  𝐴  ∧  𝐴  ≺  𝐵 )  →  ω  ≺  𝐵 )  | 
						
						
							| 18 | 
							
								17
							 | 
							3ad2antl1 | 
							⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  ω  ≺  𝐵 )  | 
						
						
							| 19 | 
							
								
							 | 
							sdomnsym | 
							⊢ ( ω  ≺  𝐵  →  ¬  𝐵  ≺  ω )  | 
						
						
							| 20 | 
							
								18 19
							 | 
							syl | 
							⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  ¬  𝐵  ≺  ω )  | 
						
						
							| 21 | 
							
								
							 | 
							isfinite | 
							⊢ ( 𝐵  ∈  Fin  ↔  𝐵  ≺  ω )  | 
						
						
							| 22 | 
							
								20 21
							 | 
							sylnibr | 
							⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  ¬  𝐵  ∈  Fin )  | 
						
						
							| 23 | 
							
								
							 | 
							gchdjuidm | 
							⊢ ( ( 𝐵  ∈  GCH  ∧  ¬  𝐵  ∈  Fin )  →  ( 𝐵  ⊔  𝐵 )  ≈  𝐵 )  | 
						
						
							| 24 | 
							
								3 22 23
							 | 
							syl2anc | 
							⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  ( 𝐵  ⊔  𝐵 )  ≈  𝐵 )  | 
						
						
							| 25 | 
							
								
							 | 
							pwen | 
							⊢ ( ( 𝐵  ⊔  𝐵 )  ≈  𝐵  →  𝒫  ( 𝐵  ⊔  𝐵 )  ≈  𝒫  𝐵 )  | 
						
						
							| 26 | 
							
								
							 | 
							domen1 | 
							⊢ ( 𝒫  ( 𝐵  ⊔  𝐵 )  ≈  𝒫  𝐵  →  ( 𝒫  ( 𝐵  ⊔  𝐵 )  ≼  ( 𝐵  ⊔  𝒫  𝐴 )  ↔  𝒫  𝐵  ≼  ( 𝐵  ⊔  𝒫  𝐴 ) ) )  | 
						
						
							| 27 | 
							
								24 25 26
							 | 
							3syl | 
							⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  ( 𝒫  ( 𝐵  ⊔  𝐵 )  ≼  ( 𝐵  ⊔  𝒫  𝐴 )  ↔  𝒫  𝐵  ≼  ( 𝐵  ⊔  𝒫  𝐴 ) ) )  | 
						
						
							| 28 | 
							
								
							 | 
							pwdjudom | 
							⊢ ( 𝒫  ( 𝐵  ⊔  𝐵 )  ≼  ( 𝐵  ⊔  𝒫  𝐴 )  →  𝒫  𝐵  ≼  𝒫  𝐴 )  | 
						
						
							| 29 | 
							
								
							 | 
							canth2g | 
							⊢ ( 𝐵  ∈  GCH  →  𝐵  ≺  𝒫  𝐵 )  | 
						
						
							| 30 | 
							
								
							 | 
							sdomdomtr | 
							⊢ ( ( 𝐵  ≺  𝒫  𝐵  ∧  𝒫  𝐵  ≼  𝒫  𝐴 )  →  𝐵  ≺  𝒫  𝐴 )  | 
						
						
							| 31 | 
							
								30
							 | 
							ex | 
							⊢ ( 𝐵  ≺  𝒫  𝐵  →  ( 𝒫  𝐵  ≼  𝒫  𝐴  →  𝐵  ≺  𝒫  𝐴 ) )  | 
						
						
							| 32 | 
							
								3 29 31
							 | 
							3syl | 
							⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  ( 𝒫  𝐵  ≼  𝒫  𝐴  →  𝐵  ≺  𝒫  𝐴 ) )  | 
						
						
							| 33 | 
							
								
							 | 
							gchi | 
							⊢ ( ( 𝐴  ∈  GCH  ∧  𝐴  ≺  𝐵  ∧  𝐵  ≺  𝒫  𝐴 )  →  𝐴  ∈  Fin )  | 
						
						
							| 34 | 
							
								33
							 | 
							3expia | 
							⊢ ( ( 𝐴  ∈  GCH  ∧  𝐴  ≺  𝐵 )  →  ( 𝐵  ≺  𝒫  𝐴  →  𝐴  ∈  Fin ) )  | 
						
						
							| 35 | 
							
								34
							 | 
							3ad2antl2 | 
							⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  ( 𝐵  ≺  𝒫  𝐴  →  𝐴  ∈  Fin ) )  | 
						
						
							| 36 | 
							
								
							 | 
							isfinite | 
							⊢ ( 𝐴  ∈  Fin  ↔  𝐴  ≺  ω )  | 
						
						
							| 37 | 
							
								
							 | 
							simpl1 | 
							⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  ω  ≼  𝐴 )  | 
						
						
							| 38 | 
							
								
							 | 
							domnsym | 
							⊢ ( ω  ≼  𝐴  →  ¬  𝐴  ≺  ω )  | 
						
						
							| 39 | 
							
								37 38
							 | 
							syl | 
							⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  ¬  𝐴  ≺  ω )  | 
						
						
							| 40 | 
							
								39
							 | 
							pm2.21d | 
							⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  ( 𝐴  ≺  ω  →  𝒫  𝐴  ≼  𝐵 ) )  | 
						
						
							| 41 | 
							
								36 40
							 | 
							biimtrid | 
							⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  ( 𝐴  ∈  Fin  →  𝒫  𝐴  ≼  𝐵 ) )  | 
						
						
							| 42 | 
							
								32 35 41
							 | 
							3syld | 
							⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  ( 𝒫  𝐵  ≼  𝒫  𝐴  →  𝒫  𝐴  ≼  𝐵 ) )  | 
						
						
							| 43 | 
							
								28 42
							 | 
							syl5 | 
							⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  ( 𝒫  ( 𝐵  ⊔  𝐵 )  ≼  ( 𝐵  ⊔  𝒫  𝐴 )  →  𝒫  𝐴  ≼  𝐵 ) )  | 
						
						
							| 44 | 
							
								27 43
							 | 
							sylbird | 
							⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  ( 𝒫  𝐵  ≼  ( 𝐵  ⊔  𝒫  𝐴 )  →  𝒫  𝐴  ≼  𝐵 ) )  | 
						
						
							| 45 | 
							
								16 44
							 | 
							syld | 
							⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  ( ( 𝒫  𝐴  ⊔  𝐵 )  ≈  𝒫  𝐵  →  𝒫  𝐴  ≼  𝐵 ) )  | 
						
						
							| 46 | 
							
								
							 | 
							djudoml | 
							⊢ ( ( 𝐵  ∈  GCH  ∧  𝒫  𝐴  ∈  V )  →  𝐵  ≼  ( 𝐵  ⊔  𝒫  𝐴 ) )  | 
						
						
							| 47 | 
							
								3 2 46
							 | 
							syl2anc | 
							⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  𝐵  ≼  ( 𝐵  ⊔  𝒫  𝐴 ) )  | 
						
						
							| 48 | 
							
								
							 | 
							domentr | 
							⊢ ( ( 𝐵  ≼  ( 𝐵  ⊔  𝒫  𝐴 )  ∧  ( 𝐵  ⊔  𝒫  𝐴 )  ≈  ( 𝒫  𝐴  ⊔  𝐵 ) )  →  𝐵  ≼  ( 𝒫  𝐴  ⊔  𝐵 ) )  | 
						
						
							| 49 | 
							
								47 9 48
							 | 
							syl2anc | 
							⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  𝐵  ≼  ( 𝒫  𝐴  ⊔  𝐵 ) )  | 
						
						
							| 50 | 
							
								
							 | 
							sdomdom | 
							⊢ ( 𝐴  ≺  𝐵  →  𝐴  ≼  𝐵 )  | 
						
						
							| 51 | 
							
								50
							 | 
							adantl | 
							⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  𝐴  ≼  𝐵 )  | 
						
						
							| 52 | 
							
								
							 | 
							pwdom | 
							⊢ ( 𝐴  ≼  𝐵  →  𝒫  𝐴  ≼  𝒫  𝐵 )  | 
						
						
							| 53 | 
							
								51 52
							 | 
							syl | 
							⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  𝒫  𝐴  ≼  𝒫  𝐵 )  | 
						
						
							| 54 | 
							
								
							 | 
							djudom1 | 
							⊢ ( ( 𝒫  𝐴  ≼  𝒫  𝐵  ∧  𝐵  ∈  GCH )  →  ( 𝒫  𝐴  ⊔  𝐵 )  ≼  ( 𝒫  𝐵  ⊔  𝐵 ) )  | 
						
						
							| 55 | 
							
								53 3 54
							 | 
							syl2anc | 
							⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  ( 𝒫  𝐴  ⊔  𝐵 )  ≼  ( 𝒫  𝐵  ⊔  𝐵 ) )  | 
						
						
							| 56 | 
							
								
							 | 
							sdomdom | 
							⊢ ( 𝐵  ≺  𝒫  𝐵  →  𝐵  ≼  𝒫  𝐵 )  | 
						
						
							| 57 | 
							
								3 29 56
							 | 
							3syl | 
							⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  𝐵  ≼  𝒫  𝐵 )  | 
						
						
							| 58 | 
							
								3
							 | 
							pwexd | 
							⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  𝒫  𝐵  ∈  V )  | 
						
						
							| 59 | 
							
								
							 | 
							djudom2 | 
							⊢ ( ( 𝐵  ≼  𝒫  𝐵  ∧  𝒫  𝐵  ∈  V )  →  ( 𝒫  𝐵  ⊔  𝐵 )  ≼  ( 𝒫  𝐵  ⊔  𝒫  𝐵 ) )  | 
						
						
							| 60 | 
							
								57 58 59
							 | 
							syl2anc | 
							⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  ( 𝒫  𝐵  ⊔  𝐵 )  ≼  ( 𝒫  𝐵  ⊔  𝒫  𝐵 ) )  | 
						
						
							| 61 | 
							
								
							 | 
							domtr | 
							⊢ ( ( ( 𝒫  𝐴  ⊔  𝐵 )  ≼  ( 𝒫  𝐵  ⊔  𝐵 )  ∧  ( 𝒫  𝐵  ⊔  𝐵 )  ≼  ( 𝒫  𝐵  ⊔  𝒫  𝐵 ) )  →  ( 𝒫  𝐴  ⊔  𝐵 )  ≼  ( 𝒫  𝐵  ⊔  𝒫  𝐵 ) )  | 
						
						
							| 62 | 
							
								55 60 61
							 | 
							syl2anc | 
							⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  ( 𝒫  𝐴  ⊔  𝐵 )  ≼  ( 𝒫  𝐵  ⊔  𝒫  𝐵 ) )  | 
						
						
							| 63 | 
							
								
							 | 
							pwdju1 | 
							⊢ ( 𝐵  ∈  GCH  →  ( 𝒫  𝐵  ⊔  𝒫  𝐵 )  ≈  𝒫  ( 𝐵  ⊔  1o ) )  | 
						
						
							| 64 | 
							
								3 63
							 | 
							syl | 
							⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  ( 𝒫  𝐵  ⊔  𝒫  𝐵 )  ≈  𝒫  ( 𝐵  ⊔  1o ) )  | 
						
						
							| 65 | 
							
								
							 | 
							gchdju1 | 
							⊢ ( ( 𝐵  ∈  GCH  ∧  ¬  𝐵  ∈  Fin )  →  ( 𝐵  ⊔  1o )  ≈  𝐵 )  | 
						
						
							| 66 | 
							
								3 22 65
							 | 
							syl2anc | 
							⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  ( 𝐵  ⊔  1o )  ≈  𝐵 )  | 
						
						
							| 67 | 
							
								
							 | 
							pwen | 
							⊢ ( ( 𝐵  ⊔  1o )  ≈  𝐵  →  𝒫  ( 𝐵  ⊔  1o )  ≈  𝒫  𝐵 )  | 
						
						
							| 68 | 
							
								66 67
							 | 
							syl | 
							⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  𝒫  ( 𝐵  ⊔  1o )  ≈  𝒫  𝐵 )  | 
						
						
							| 69 | 
							
								
							 | 
							entr | 
							⊢ ( ( ( 𝒫  𝐵  ⊔  𝒫  𝐵 )  ≈  𝒫  ( 𝐵  ⊔  1o )  ∧  𝒫  ( 𝐵  ⊔  1o )  ≈  𝒫  𝐵 )  →  ( 𝒫  𝐵  ⊔  𝒫  𝐵 )  ≈  𝒫  𝐵 )  | 
						
						
							| 70 | 
							
								64 68 69
							 | 
							syl2anc | 
							⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  ( 𝒫  𝐵  ⊔  𝒫  𝐵 )  ≈  𝒫  𝐵 )  | 
						
						
							| 71 | 
							
								
							 | 
							domentr | 
							⊢ ( ( ( 𝒫  𝐴  ⊔  𝐵 )  ≼  ( 𝒫  𝐵  ⊔  𝒫  𝐵 )  ∧  ( 𝒫  𝐵  ⊔  𝒫  𝐵 )  ≈  𝒫  𝐵 )  →  ( 𝒫  𝐴  ⊔  𝐵 )  ≼  𝒫  𝐵 )  | 
						
						
							| 72 | 
							
								62 70 71
							 | 
							syl2anc | 
							⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  ( 𝒫  𝐴  ⊔  𝐵 )  ≼  𝒫  𝐵 )  | 
						
						
							| 73 | 
							
								
							 | 
							gchor | 
							⊢ ( ( ( 𝐵  ∈  GCH  ∧  ¬  𝐵  ∈  Fin )  ∧  ( 𝐵  ≼  ( 𝒫  𝐴  ⊔  𝐵 )  ∧  ( 𝒫  𝐴  ⊔  𝐵 )  ≼  𝒫  𝐵 ) )  →  ( 𝐵  ≈  ( 𝒫  𝐴  ⊔  𝐵 )  ∨  ( 𝒫  𝐴  ⊔  𝐵 )  ≈  𝒫  𝐵 ) )  | 
						
						
							| 74 | 
							
								3 22 49 72 73
							 | 
							syl22anc | 
							⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  ( 𝐵  ≈  ( 𝒫  𝐴  ⊔  𝐵 )  ∨  ( 𝒫  𝐴  ⊔  𝐵 )  ≈  𝒫  𝐵 ) )  | 
						
						
							| 75 | 
							
								7 45 74
							 | 
							mpjaod | 
							⊢ ( ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  ∧  𝐴  ≺  𝐵 )  →  𝒫  𝐴  ≼  𝐵 )  | 
						
						
							| 76 | 
							
								75
							 | 
							ex | 
							⊢ ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  →  ( 𝐴  ≺  𝐵  →  𝒫  𝐴  ≼  𝐵 ) )  | 
						
						
							| 77 | 
							
								
							 | 
							reldom | 
							⊢ Rel   ≼   | 
						
						
							| 78 | 
							
								77
							 | 
							brrelex1i | 
							⊢ ( 𝒫  𝐴  ≼  𝐵  →  𝒫  𝐴  ∈  V )  | 
						
						
							| 79 | 
							
								
							 | 
							pwexb | 
							⊢ ( 𝐴  ∈  V  ↔  𝒫  𝐴  ∈  V )  | 
						
						
							| 80 | 
							
								
							 | 
							canth2g | 
							⊢ ( 𝐴  ∈  V  →  𝐴  ≺  𝒫  𝐴 )  | 
						
						
							| 81 | 
							
								79 80
							 | 
							sylbir | 
							⊢ ( 𝒫  𝐴  ∈  V  →  𝐴  ≺  𝒫  𝐴 )  | 
						
						
							| 82 | 
							
								78 81
							 | 
							syl | 
							⊢ ( 𝒫  𝐴  ≼  𝐵  →  𝐴  ≺  𝒫  𝐴 )  | 
						
						
							| 83 | 
							
								
							 | 
							sdomdomtr | 
							⊢ ( ( 𝐴  ≺  𝒫  𝐴  ∧  𝒫  𝐴  ≼  𝐵 )  →  𝐴  ≺  𝐵 )  | 
						
						
							| 84 | 
							
								82 83
							 | 
							mpancom | 
							⊢ ( 𝒫  𝐴  ≼  𝐵  →  𝐴  ≺  𝐵 )  | 
						
						
							| 85 | 
							
								76 84
							 | 
							impbid1 | 
							⊢ ( ( ω  ≼  𝐴  ∧  𝐴  ∈  GCH  ∧  𝐵  ∈  GCH )  →  ( 𝐴  ≺  𝐵  ↔  𝒫  𝐴  ≼  𝐵 ) )  |