Step |
Hyp |
Ref |
Expression |
1 |
|
alephsucpw2 |
⊢ ¬ 𝒫 ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝐴 ) |
2 |
|
alephon |
⊢ ( ℵ ‘ suc 𝐴 ) ∈ On |
3 |
|
onenon |
⊢ ( ( ℵ ‘ suc 𝐴 ) ∈ On → ( ℵ ‘ suc 𝐴 ) ∈ dom card ) |
4 |
2 3
|
ax-mp |
⊢ ( ℵ ‘ suc 𝐴 ) ∈ dom card |
5 |
|
simp3 |
⊢ ( ( 𝐴 ∈ On ∧ ( ℵ ‘ 𝐴 ) ∈ GCH ∧ 𝒫 ( ℵ ‘ 𝐴 ) ∈ dom card ) → 𝒫 ( ℵ ‘ 𝐴 ) ∈ dom card ) |
6 |
|
domtri2 |
⊢ ( ( ( ℵ ‘ suc 𝐴 ) ∈ dom card ∧ 𝒫 ( ℵ ‘ 𝐴 ) ∈ dom card ) → ( ( ℵ ‘ suc 𝐴 ) ≼ 𝒫 ( ℵ ‘ 𝐴 ) ↔ ¬ 𝒫 ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝐴 ) ) ) |
7 |
4 5 6
|
sylancr |
⊢ ( ( 𝐴 ∈ On ∧ ( ℵ ‘ 𝐴 ) ∈ GCH ∧ 𝒫 ( ℵ ‘ 𝐴 ) ∈ dom card ) → ( ( ℵ ‘ suc 𝐴 ) ≼ 𝒫 ( ℵ ‘ 𝐴 ) ↔ ¬ 𝒫 ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝐴 ) ) ) |
8 |
1 7
|
mpbiri |
⊢ ( ( 𝐴 ∈ On ∧ ( ℵ ‘ 𝐴 ) ∈ GCH ∧ 𝒫 ( ℵ ‘ 𝐴 ) ∈ dom card ) → ( ℵ ‘ suc 𝐴 ) ≼ 𝒫 ( ℵ ‘ 𝐴 ) ) |
9 |
|
fvex |
⊢ ( ℵ ‘ 𝐴 ) ∈ V |
10 |
|
simp1 |
⊢ ( ( 𝐴 ∈ On ∧ ( ℵ ‘ 𝐴 ) ∈ GCH ∧ 𝒫 ( ℵ ‘ 𝐴 ) ∈ dom card ) → 𝐴 ∈ On ) |
11 |
|
alephgeom |
⊢ ( 𝐴 ∈ On ↔ ω ⊆ ( ℵ ‘ 𝐴 ) ) |
12 |
10 11
|
sylib |
⊢ ( ( 𝐴 ∈ On ∧ ( ℵ ‘ 𝐴 ) ∈ GCH ∧ 𝒫 ( ℵ ‘ 𝐴 ) ∈ dom card ) → ω ⊆ ( ℵ ‘ 𝐴 ) ) |
13 |
|
ssdomg |
⊢ ( ( ℵ ‘ 𝐴 ) ∈ V → ( ω ⊆ ( ℵ ‘ 𝐴 ) → ω ≼ ( ℵ ‘ 𝐴 ) ) ) |
14 |
9 12 13
|
mpsyl |
⊢ ( ( 𝐴 ∈ On ∧ ( ℵ ‘ 𝐴 ) ∈ GCH ∧ 𝒫 ( ℵ ‘ 𝐴 ) ∈ dom card ) → ω ≼ ( ℵ ‘ 𝐴 ) ) |
15 |
|
domnsym |
⊢ ( ω ≼ ( ℵ ‘ 𝐴 ) → ¬ ( ℵ ‘ 𝐴 ) ≺ ω ) |
16 |
14 15
|
syl |
⊢ ( ( 𝐴 ∈ On ∧ ( ℵ ‘ 𝐴 ) ∈ GCH ∧ 𝒫 ( ℵ ‘ 𝐴 ) ∈ dom card ) → ¬ ( ℵ ‘ 𝐴 ) ≺ ω ) |
17 |
|
isfinite |
⊢ ( ( ℵ ‘ 𝐴 ) ∈ Fin ↔ ( ℵ ‘ 𝐴 ) ≺ ω ) |
18 |
16 17
|
sylnibr |
⊢ ( ( 𝐴 ∈ On ∧ ( ℵ ‘ 𝐴 ) ∈ GCH ∧ 𝒫 ( ℵ ‘ 𝐴 ) ∈ dom card ) → ¬ ( ℵ ‘ 𝐴 ) ∈ Fin ) |
19 |
|
simp2 |
⊢ ( ( 𝐴 ∈ On ∧ ( ℵ ‘ 𝐴 ) ∈ GCH ∧ 𝒫 ( ℵ ‘ 𝐴 ) ∈ dom card ) → ( ℵ ‘ 𝐴 ) ∈ GCH ) |
20 |
|
alephordilem1 |
⊢ ( 𝐴 ∈ On → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝐴 ) ) |
21 |
20
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ On ∧ ( ℵ ‘ 𝐴 ) ∈ GCH ∧ 𝒫 ( ℵ ‘ 𝐴 ) ∈ dom card ) → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝐴 ) ) |
22 |
|
gchi |
⊢ ( ( ( ℵ ‘ 𝐴 ) ∈ GCH ∧ ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝐴 ) ∧ ( ℵ ‘ suc 𝐴 ) ≺ 𝒫 ( ℵ ‘ 𝐴 ) ) → ( ℵ ‘ 𝐴 ) ∈ Fin ) |
23 |
22
|
3expia |
⊢ ( ( ( ℵ ‘ 𝐴 ) ∈ GCH ∧ ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝐴 ) ) → ( ( ℵ ‘ suc 𝐴 ) ≺ 𝒫 ( ℵ ‘ 𝐴 ) → ( ℵ ‘ 𝐴 ) ∈ Fin ) ) |
24 |
19 21 23
|
syl2anc |
⊢ ( ( 𝐴 ∈ On ∧ ( ℵ ‘ 𝐴 ) ∈ GCH ∧ 𝒫 ( ℵ ‘ 𝐴 ) ∈ dom card ) → ( ( ℵ ‘ suc 𝐴 ) ≺ 𝒫 ( ℵ ‘ 𝐴 ) → ( ℵ ‘ 𝐴 ) ∈ Fin ) ) |
25 |
18 24
|
mtod |
⊢ ( ( 𝐴 ∈ On ∧ ( ℵ ‘ 𝐴 ) ∈ GCH ∧ 𝒫 ( ℵ ‘ 𝐴 ) ∈ dom card ) → ¬ ( ℵ ‘ suc 𝐴 ) ≺ 𝒫 ( ℵ ‘ 𝐴 ) ) |
26 |
|
domtri2 |
⊢ ( ( 𝒫 ( ℵ ‘ 𝐴 ) ∈ dom card ∧ ( ℵ ‘ suc 𝐴 ) ∈ dom card ) → ( 𝒫 ( ℵ ‘ 𝐴 ) ≼ ( ℵ ‘ suc 𝐴 ) ↔ ¬ ( ℵ ‘ suc 𝐴 ) ≺ 𝒫 ( ℵ ‘ 𝐴 ) ) ) |
27 |
5 4 26
|
sylancl |
⊢ ( ( 𝐴 ∈ On ∧ ( ℵ ‘ 𝐴 ) ∈ GCH ∧ 𝒫 ( ℵ ‘ 𝐴 ) ∈ dom card ) → ( 𝒫 ( ℵ ‘ 𝐴 ) ≼ ( ℵ ‘ suc 𝐴 ) ↔ ¬ ( ℵ ‘ suc 𝐴 ) ≺ 𝒫 ( ℵ ‘ 𝐴 ) ) ) |
28 |
25 27
|
mpbird |
⊢ ( ( 𝐴 ∈ On ∧ ( ℵ ‘ 𝐴 ) ∈ GCH ∧ 𝒫 ( ℵ ‘ 𝐴 ) ∈ dom card ) → 𝒫 ( ℵ ‘ 𝐴 ) ≼ ( ℵ ‘ suc 𝐴 ) ) |
29 |
|
sbth |
⊢ ( ( ( ℵ ‘ suc 𝐴 ) ≼ 𝒫 ( ℵ ‘ 𝐴 ) ∧ 𝒫 ( ℵ ‘ 𝐴 ) ≼ ( ℵ ‘ suc 𝐴 ) ) → ( ℵ ‘ suc 𝐴 ) ≈ 𝒫 ( ℵ ‘ 𝐴 ) ) |
30 |
8 28 29
|
syl2anc |
⊢ ( ( 𝐴 ∈ On ∧ ( ℵ ‘ 𝐴 ) ∈ GCH ∧ 𝒫 ( ℵ ‘ 𝐴 ) ∈ dom card ) → ( ℵ ‘ suc 𝐴 ) ≈ 𝒫 ( ℵ ‘ 𝐴 ) ) |