| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							alephsucpw2 | 
							⊢ ¬  𝒫  ( ℵ ‘ 𝐴 )  ≺  ( ℵ ‘ suc  𝐴 )  | 
						
						
							| 2 | 
							
								
							 | 
							alephon | 
							⊢ ( ℵ ‘ suc  𝐴 )  ∈  On  | 
						
						
							| 3 | 
							
								
							 | 
							onenon | 
							⊢ ( ( ℵ ‘ suc  𝐴 )  ∈  On  →  ( ℵ ‘ suc  𝐴 )  ∈  dom  card )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							ax-mp | 
							⊢ ( ℵ ‘ suc  𝐴 )  ∈  dom  card  | 
						
						
							| 5 | 
							
								
							 | 
							simp3 | 
							⊢ ( ( 𝐴  ∈  On  ∧  ( ℵ ‘ 𝐴 )  ∈  GCH  ∧  𝒫  ( ℵ ‘ 𝐴 )  ∈  dom  card )  →  𝒫  ( ℵ ‘ 𝐴 )  ∈  dom  card )  | 
						
						
							| 6 | 
							
								
							 | 
							domtri2 | 
							⊢ ( ( ( ℵ ‘ suc  𝐴 )  ∈  dom  card  ∧  𝒫  ( ℵ ‘ 𝐴 )  ∈  dom  card )  →  ( ( ℵ ‘ suc  𝐴 )  ≼  𝒫  ( ℵ ‘ 𝐴 )  ↔  ¬  𝒫  ( ℵ ‘ 𝐴 )  ≺  ( ℵ ‘ suc  𝐴 ) ) )  | 
						
						
							| 7 | 
							
								4 5 6
							 | 
							sylancr | 
							⊢ ( ( 𝐴  ∈  On  ∧  ( ℵ ‘ 𝐴 )  ∈  GCH  ∧  𝒫  ( ℵ ‘ 𝐴 )  ∈  dom  card )  →  ( ( ℵ ‘ suc  𝐴 )  ≼  𝒫  ( ℵ ‘ 𝐴 )  ↔  ¬  𝒫  ( ℵ ‘ 𝐴 )  ≺  ( ℵ ‘ suc  𝐴 ) ) )  | 
						
						
							| 8 | 
							
								1 7
							 | 
							mpbiri | 
							⊢ ( ( 𝐴  ∈  On  ∧  ( ℵ ‘ 𝐴 )  ∈  GCH  ∧  𝒫  ( ℵ ‘ 𝐴 )  ∈  dom  card )  →  ( ℵ ‘ suc  𝐴 )  ≼  𝒫  ( ℵ ‘ 𝐴 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							fvex | 
							⊢ ( ℵ ‘ 𝐴 )  ∈  V  | 
						
						
							| 10 | 
							
								
							 | 
							simp1 | 
							⊢ ( ( 𝐴  ∈  On  ∧  ( ℵ ‘ 𝐴 )  ∈  GCH  ∧  𝒫  ( ℵ ‘ 𝐴 )  ∈  dom  card )  →  𝐴  ∈  On )  | 
						
						
							| 11 | 
							
								
							 | 
							alephgeom | 
							⊢ ( 𝐴  ∈  On  ↔  ω  ⊆  ( ℵ ‘ 𝐴 ) )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							sylib | 
							⊢ ( ( 𝐴  ∈  On  ∧  ( ℵ ‘ 𝐴 )  ∈  GCH  ∧  𝒫  ( ℵ ‘ 𝐴 )  ∈  dom  card )  →  ω  ⊆  ( ℵ ‘ 𝐴 ) )  | 
						
						
							| 13 | 
							
								
							 | 
							ssdomg | 
							⊢ ( ( ℵ ‘ 𝐴 )  ∈  V  →  ( ω  ⊆  ( ℵ ‘ 𝐴 )  →  ω  ≼  ( ℵ ‘ 𝐴 ) ) )  | 
						
						
							| 14 | 
							
								9 12 13
							 | 
							mpsyl | 
							⊢ ( ( 𝐴  ∈  On  ∧  ( ℵ ‘ 𝐴 )  ∈  GCH  ∧  𝒫  ( ℵ ‘ 𝐴 )  ∈  dom  card )  →  ω  ≼  ( ℵ ‘ 𝐴 ) )  | 
						
						
							| 15 | 
							
								
							 | 
							domnsym | 
							⊢ ( ω  ≼  ( ℵ ‘ 𝐴 )  →  ¬  ( ℵ ‘ 𝐴 )  ≺  ω )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							syl | 
							⊢ ( ( 𝐴  ∈  On  ∧  ( ℵ ‘ 𝐴 )  ∈  GCH  ∧  𝒫  ( ℵ ‘ 𝐴 )  ∈  dom  card )  →  ¬  ( ℵ ‘ 𝐴 )  ≺  ω )  | 
						
						
							| 17 | 
							
								
							 | 
							isfinite | 
							⊢ ( ( ℵ ‘ 𝐴 )  ∈  Fin  ↔  ( ℵ ‘ 𝐴 )  ≺  ω )  | 
						
						
							| 18 | 
							
								16 17
							 | 
							sylnibr | 
							⊢ ( ( 𝐴  ∈  On  ∧  ( ℵ ‘ 𝐴 )  ∈  GCH  ∧  𝒫  ( ℵ ‘ 𝐴 )  ∈  dom  card )  →  ¬  ( ℵ ‘ 𝐴 )  ∈  Fin )  | 
						
						
							| 19 | 
							
								
							 | 
							simp2 | 
							⊢ ( ( 𝐴  ∈  On  ∧  ( ℵ ‘ 𝐴 )  ∈  GCH  ∧  𝒫  ( ℵ ‘ 𝐴 )  ∈  dom  card )  →  ( ℵ ‘ 𝐴 )  ∈  GCH )  | 
						
						
							| 20 | 
							
								
							 | 
							alephordilem1 | 
							⊢ ( 𝐴  ∈  On  →  ( ℵ ‘ 𝐴 )  ≺  ( ℵ ‘ suc  𝐴 ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝐴  ∈  On  ∧  ( ℵ ‘ 𝐴 )  ∈  GCH  ∧  𝒫  ( ℵ ‘ 𝐴 )  ∈  dom  card )  →  ( ℵ ‘ 𝐴 )  ≺  ( ℵ ‘ suc  𝐴 ) )  | 
						
						
							| 22 | 
							
								
							 | 
							gchi | 
							⊢ ( ( ( ℵ ‘ 𝐴 )  ∈  GCH  ∧  ( ℵ ‘ 𝐴 )  ≺  ( ℵ ‘ suc  𝐴 )  ∧  ( ℵ ‘ suc  𝐴 )  ≺  𝒫  ( ℵ ‘ 𝐴 ) )  →  ( ℵ ‘ 𝐴 )  ∈  Fin )  | 
						
						
							| 23 | 
							
								22
							 | 
							3expia | 
							⊢ ( ( ( ℵ ‘ 𝐴 )  ∈  GCH  ∧  ( ℵ ‘ 𝐴 )  ≺  ( ℵ ‘ suc  𝐴 ) )  →  ( ( ℵ ‘ suc  𝐴 )  ≺  𝒫  ( ℵ ‘ 𝐴 )  →  ( ℵ ‘ 𝐴 )  ∈  Fin ) )  | 
						
						
							| 24 | 
							
								19 21 23
							 | 
							syl2anc | 
							⊢ ( ( 𝐴  ∈  On  ∧  ( ℵ ‘ 𝐴 )  ∈  GCH  ∧  𝒫  ( ℵ ‘ 𝐴 )  ∈  dom  card )  →  ( ( ℵ ‘ suc  𝐴 )  ≺  𝒫  ( ℵ ‘ 𝐴 )  →  ( ℵ ‘ 𝐴 )  ∈  Fin ) )  | 
						
						
							| 25 | 
							
								18 24
							 | 
							mtod | 
							⊢ ( ( 𝐴  ∈  On  ∧  ( ℵ ‘ 𝐴 )  ∈  GCH  ∧  𝒫  ( ℵ ‘ 𝐴 )  ∈  dom  card )  →  ¬  ( ℵ ‘ suc  𝐴 )  ≺  𝒫  ( ℵ ‘ 𝐴 ) )  | 
						
						
							| 26 | 
							
								
							 | 
							domtri2 | 
							⊢ ( ( 𝒫  ( ℵ ‘ 𝐴 )  ∈  dom  card  ∧  ( ℵ ‘ suc  𝐴 )  ∈  dom  card )  →  ( 𝒫  ( ℵ ‘ 𝐴 )  ≼  ( ℵ ‘ suc  𝐴 )  ↔  ¬  ( ℵ ‘ suc  𝐴 )  ≺  𝒫  ( ℵ ‘ 𝐴 ) ) )  | 
						
						
							| 27 | 
							
								5 4 26
							 | 
							sylancl | 
							⊢ ( ( 𝐴  ∈  On  ∧  ( ℵ ‘ 𝐴 )  ∈  GCH  ∧  𝒫  ( ℵ ‘ 𝐴 )  ∈  dom  card )  →  ( 𝒫  ( ℵ ‘ 𝐴 )  ≼  ( ℵ ‘ suc  𝐴 )  ↔  ¬  ( ℵ ‘ suc  𝐴 )  ≺  𝒫  ( ℵ ‘ 𝐴 ) ) )  | 
						
						
							| 28 | 
							
								25 27
							 | 
							mpbird | 
							⊢ ( ( 𝐴  ∈  On  ∧  ( ℵ ‘ 𝐴 )  ∈  GCH  ∧  𝒫  ( ℵ ‘ 𝐴 )  ∈  dom  card )  →  𝒫  ( ℵ ‘ 𝐴 )  ≼  ( ℵ ‘ suc  𝐴 ) )  | 
						
						
							| 29 | 
							
								
							 | 
							sbth | 
							⊢ ( ( ( ℵ ‘ suc  𝐴 )  ≼  𝒫  ( ℵ ‘ 𝐴 )  ∧  𝒫  ( ℵ ‘ 𝐴 )  ≼  ( ℵ ‘ suc  𝐴 ) )  →  ( ℵ ‘ suc  𝐴 )  ≈  𝒫  ( ℵ ‘ 𝐴 ) )  | 
						
						
							| 30 | 
							
								8 28 29
							 | 
							syl2anc | 
							⊢ ( ( 𝐴  ∈  On  ∧  ( ℵ ‘ 𝐴 )  ∈  GCH  ∧  𝒫  ( ℵ ‘ 𝐴 )  ∈  dom  card )  →  ( ℵ ‘ suc  𝐴 )  ≈  𝒫  ( ℵ ‘ 𝐴 ) )  |