| Step |
Hyp |
Ref |
Expression |
| 1 |
|
alephsucpw2 |
|- -. ~P ( aleph ` A ) ~< ( aleph ` suc A ) |
| 2 |
|
alephon |
|- ( aleph ` suc A ) e. On |
| 3 |
|
onenon |
|- ( ( aleph ` suc A ) e. On -> ( aleph ` suc A ) e. dom card ) |
| 4 |
2 3
|
ax-mp |
|- ( aleph ` suc A ) e. dom card |
| 5 |
|
simp3 |
|- ( ( A e. On /\ ( aleph ` A ) e. GCH /\ ~P ( aleph ` A ) e. dom card ) -> ~P ( aleph ` A ) e. dom card ) |
| 6 |
|
domtri2 |
|- ( ( ( aleph ` suc A ) e. dom card /\ ~P ( aleph ` A ) e. dom card ) -> ( ( aleph ` suc A ) ~<_ ~P ( aleph ` A ) <-> -. ~P ( aleph ` A ) ~< ( aleph ` suc A ) ) ) |
| 7 |
4 5 6
|
sylancr |
|- ( ( A e. On /\ ( aleph ` A ) e. GCH /\ ~P ( aleph ` A ) e. dom card ) -> ( ( aleph ` suc A ) ~<_ ~P ( aleph ` A ) <-> -. ~P ( aleph ` A ) ~< ( aleph ` suc A ) ) ) |
| 8 |
1 7
|
mpbiri |
|- ( ( A e. On /\ ( aleph ` A ) e. GCH /\ ~P ( aleph ` A ) e. dom card ) -> ( aleph ` suc A ) ~<_ ~P ( aleph ` A ) ) |
| 9 |
|
fvex |
|- ( aleph ` A ) e. _V |
| 10 |
|
simp1 |
|- ( ( A e. On /\ ( aleph ` A ) e. GCH /\ ~P ( aleph ` A ) e. dom card ) -> A e. On ) |
| 11 |
|
alephgeom |
|- ( A e. On <-> _om C_ ( aleph ` A ) ) |
| 12 |
10 11
|
sylib |
|- ( ( A e. On /\ ( aleph ` A ) e. GCH /\ ~P ( aleph ` A ) e. dom card ) -> _om C_ ( aleph ` A ) ) |
| 13 |
|
ssdomg |
|- ( ( aleph ` A ) e. _V -> ( _om C_ ( aleph ` A ) -> _om ~<_ ( aleph ` A ) ) ) |
| 14 |
9 12 13
|
mpsyl |
|- ( ( A e. On /\ ( aleph ` A ) e. GCH /\ ~P ( aleph ` A ) e. dom card ) -> _om ~<_ ( aleph ` A ) ) |
| 15 |
|
domnsym |
|- ( _om ~<_ ( aleph ` A ) -> -. ( aleph ` A ) ~< _om ) |
| 16 |
14 15
|
syl |
|- ( ( A e. On /\ ( aleph ` A ) e. GCH /\ ~P ( aleph ` A ) e. dom card ) -> -. ( aleph ` A ) ~< _om ) |
| 17 |
|
isfinite |
|- ( ( aleph ` A ) e. Fin <-> ( aleph ` A ) ~< _om ) |
| 18 |
16 17
|
sylnibr |
|- ( ( A e. On /\ ( aleph ` A ) e. GCH /\ ~P ( aleph ` A ) e. dom card ) -> -. ( aleph ` A ) e. Fin ) |
| 19 |
|
simp2 |
|- ( ( A e. On /\ ( aleph ` A ) e. GCH /\ ~P ( aleph ` A ) e. dom card ) -> ( aleph ` A ) e. GCH ) |
| 20 |
|
alephordilem1 |
|- ( A e. On -> ( aleph ` A ) ~< ( aleph ` suc A ) ) |
| 21 |
20
|
3ad2ant1 |
|- ( ( A e. On /\ ( aleph ` A ) e. GCH /\ ~P ( aleph ` A ) e. dom card ) -> ( aleph ` A ) ~< ( aleph ` suc A ) ) |
| 22 |
|
gchi |
|- ( ( ( aleph ` A ) e. GCH /\ ( aleph ` A ) ~< ( aleph ` suc A ) /\ ( aleph ` suc A ) ~< ~P ( aleph ` A ) ) -> ( aleph ` A ) e. Fin ) |
| 23 |
22
|
3expia |
|- ( ( ( aleph ` A ) e. GCH /\ ( aleph ` A ) ~< ( aleph ` suc A ) ) -> ( ( aleph ` suc A ) ~< ~P ( aleph ` A ) -> ( aleph ` A ) e. Fin ) ) |
| 24 |
19 21 23
|
syl2anc |
|- ( ( A e. On /\ ( aleph ` A ) e. GCH /\ ~P ( aleph ` A ) e. dom card ) -> ( ( aleph ` suc A ) ~< ~P ( aleph ` A ) -> ( aleph ` A ) e. Fin ) ) |
| 25 |
18 24
|
mtod |
|- ( ( A e. On /\ ( aleph ` A ) e. GCH /\ ~P ( aleph ` A ) e. dom card ) -> -. ( aleph ` suc A ) ~< ~P ( aleph ` A ) ) |
| 26 |
|
domtri2 |
|- ( ( ~P ( aleph ` A ) e. dom card /\ ( aleph ` suc A ) e. dom card ) -> ( ~P ( aleph ` A ) ~<_ ( aleph ` suc A ) <-> -. ( aleph ` suc A ) ~< ~P ( aleph ` A ) ) ) |
| 27 |
5 4 26
|
sylancl |
|- ( ( A e. On /\ ( aleph ` A ) e. GCH /\ ~P ( aleph ` A ) e. dom card ) -> ( ~P ( aleph ` A ) ~<_ ( aleph ` suc A ) <-> -. ( aleph ` suc A ) ~< ~P ( aleph ` A ) ) ) |
| 28 |
25 27
|
mpbird |
|- ( ( A e. On /\ ( aleph ` A ) e. GCH /\ ~P ( aleph ` A ) e. dom card ) -> ~P ( aleph ` A ) ~<_ ( aleph ` suc A ) ) |
| 29 |
|
sbth |
|- ( ( ( aleph ` suc A ) ~<_ ~P ( aleph ` A ) /\ ~P ( aleph ` A ) ~<_ ( aleph ` suc A ) ) -> ( aleph ` suc A ) ~~ ~P ( aleph ` A ) ) |
| 30 |
8 28 29
|
syl2anc |
|- ( ( A e. On /\ ( aleph ` A ) e. GCH /\ ~P ( aleph ` A ) e. dom card ) -> ( aleph ` suc A ) ~~ ~P ( aleph ` A ) ) |