| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl2 |
|
| 2 |
1
|
pwexd |
|
| 3 |
|
simpl3 |
|
| 4 |
|
djudoml |
|
| 5 |
2 3 4
|
syl2anc |
|
| 6 |
|
domen2 |
|
| 7 |
5 6
|
syl5ibrcom |
|
| 8 |
|
djucomen |
|
| 9 |
3 2 8
|
syl2anc |
|
| 10 |
|
entr |
|
| 11 |
10
|
ex |
|
| 12 |
9 11
|
syl |
|
| 13 |
|
ensym |
|
| 14 |
|
endom |
|
| 15 |
13 14
|
syl |
|
| 16 |
12 15
|
syl6 |
|
| 17 |
|
domsdomtr |
|
| 18 |
17
|
3ad2antl1 |
|
| 19 |
|
sdomnsym |
|
| 20 |
18 19
|
syl |
|
| 21 |
|
isfinite |
|
| 22 |
20 21
|
sylnibr |
|
| 23 |
|
gchdjuidm |
|
| 24 |
3 22 23
|
syl2anc |
|
| 25 |
|
pwen |
|
| 26 |
|
domen1 |
|
| 27 |
24 25 26
|
3syl |
|
| 28 |
|
pwdjudom |
|
| 29 |
|
canth2g |
|
| 30 |
|
sdomdomtr |
|
| 31 |
30
|
ex |
|
| 32 |
3 29 31
|
3syl |
|
| 33 |
|
gchi |
|
| 34 |
33
|
3expia |
|
| 35 |
34
|
3ad2antl2 |
|
| 36 |
|
isfinite |
|
| 37 |
|
simpl1 |
|
| 38 |
|
domnsym |
|
| 39 |
37 38
|
syl |
|
| 40 |
39
|
pm2.21d |
|
| 41 |
36 40
|
biimtrid |
|
| 42 |
32 35 41
|
3syld |
|
| 43 |
28 42
|
syl5 |
|
| 44 |
27 43
|
sylbird |
|
| 45 |
16 44
|
syld |
|
| 46 |
|
djudoml |
|
| 47 |
3 2 46
|
syl2anc |
|
| 48 |
|
domentr |
|
| 49 |
47 9 48
|
syl2anc |
|
| 50 |
|
sdomdom |
|
| 51 |
50
|
adantl |
|
| 52 |
|
pwdom |
|
| 53 |
51 52
|
syl |
|
| 54 |
|
djudom1 |
|
| 55 |
53 3 54
|
syl2anc |
|
| 56 |
|
sdomdom |
|
| 57 |
3 29 56
|
3syl |
|
| 58 |
3
|
pwexd |
|
| 59 |
|
djudom2 |
|
| 60 |
57 58 59
|
syl2anc |
|
| 61 |
|
domtr |
|
| 62 |
55 60 61
|
syl2anc |
|
| 63 |
|
pwdju1 |
|
| 64 |
3 63
|
syl |
|
| 65 |
|
gchdju1 |
|
| 66 |
3 22 65
|
syl2anc |
|
| 67 |
|
pwen |
|
| 68 |
66 67
|
syl |
|
| 69 |
|
entr |
|
| 70 |
64 68 69
|
syl2anc |
|
| 71 |
|
domentr |
|
| 72 |
62 70 71
|
syl2anc |
|
| 73 |
|
gchor |
|
| 74 |
3 22 49 72 73
|
syl22anc |
|
| 75 |
7 45 74
|
mpjaod |
|
| 76 |
75
|
ex |
|
| 77 |
|
reldom |
|
| 78 |
77
|
brrelex1i |
|
| 79 |
|
pwexb |
|
| 80 |
|
canth2g |
|
| 81 |
79 80
|
sylbir |
|
| 82 |
78 81
|
syl |
|
| 83 |
|
sdomdomtr |
|
| 84 |
82 83
|
mpancom |
|
| 85 |
76 84
|
impbid1 |
|