Metamath Proof Explorer


Theorem gchpwdom

Description: A relationship between dominance over the powerset and strict dominance when the sets involved are infinite GCH-sets. Proposition 3.1 of KanamoriPincus p. 421. (Contributed by Mario Carneiro, 31-May-2015)

Ref Expression
Assertion gchpwdom ωAAGCHBGCHAB𝒫AB

Proof

Step Hyp Ref Expression
1 simpl2 ωAAGCHBGCHABAGCH
2 1 pwexd ωAAGCHBGCHAB𝒫AV
3 simpl3 ωAAGCHBGCHABBGCH
4 djudoml 𝒫AVBGCH𝒫A𝒫A⊔︀B
5 2 3 4 syl2anc ωAAGCHBGCHAB𝒫A𝒫A⊔︀B
6 domen2 B𝒫A⊔︀B𝒫AB𝒫A𝒫A⊔︀B
7 5 6 syl5ibrcom ωAAGCHBGCHABB𝒫A⊔︀B𝒫AB
8 djucomen BGCH𝒫AVB⊔︀𝒫A𝒫A⊔︀B
9 3 2 8 syl2anc ωAAGCHBGCHABB⊔︀𝒫A𝒫A⊔︀B
10 entr B⊔︀𝒫A𝒫A⊔︀B𝒫A⊔︀B𝒫BB⊔︀𝒫A𝒫B
11 10 ex B⊔︀𝒫A𝒫A⊔︀B𝒫A⊔︀B𝒫BB⊔︀𝒫A𝒫B
12 9 11 syl ωAAGCHBGCHAB𝒫A⊔︀B𝒫BB⊔︀𝒫A𝒫B
13 ensym B⊔︀𝒫A𝒫B𝒫BB⊔︀𝒫A
14 endom 𝒫BB⊔︀𝒫A𝒫BB⊔︀𝒫A
15 13 14 syl B⊔︀𝒫A𝒫B𝒫BB⊔︀𝒫A
16 12 15 syl6 ωAAGCHBGCHAB𝒫A⊔︀B𝒫B𝒫BB⊔︀𝒫A
17 domsdomtr ωAABωB
18 17 3ad2antl1 ωAAGCHBGCHABωB
19 sdomnsym ωB¬Bω
20 18 19 syl ωAAGCHBGCHAB¬Bω
21 isfinite BFinBω
22 20 21 sylnibr ωAAGCHBGCHAB¬BFin
23 gchdjuidm BGCH¬BFinB⊔︀BB
24 3 22 23 syl2anc ωAAGCHBGCHABB⊔︀BB
25 pwen B⊔︀BB𝒫B⊔︀B𝒫B
26 domen1 𝒫B⊔︀B𝒫B𝒫B⊔︀BB⊔︀𝒫A𝒫BB⊔︀𝒫A
27 24 25 26 3syl ωAAGCHBGCHAB𝒫B⊔︀BB⊔︀𝒫A𝒫BB⊔︀𝒫A
28 pwdjudom 𝒫B⊔︀BB⊔︀𝒫A𝒫B𝒫A
29 canth2g BGCHB𝒫B
30 sdomdomtr B𝒫B𝒫B𝒫AB𝒫A
31 30 ex B𝒫B𝒫B𝒫AB𝒫A
32 3 29 31 3syl ωAAGCHBGCHAB𝒫B𝒫AB𝒫A
33 gchi AGCHABB𝒫AAFin
34 33 3expia AGCHABB𝒫AAFin
35 34 3ad2antl2 ωAAGCHBGCHABB𝒫AAFin
36 isfinite AFinAω
37 simpl1 ωAAGCHBGCHABωA
38 domnsym ωA¬Aω
39 37 38 syl ωAAGCHBGCHAB¬Aω
40 39 pm2.21d ωAAGCHBGCHABAω𝒫AB
41 36 40 biimtrid ωAAGCHBGCHABAFin𝒫AB
42 32 35 41 3syld ωAAGCHBGCHAB𝒫B𝒫A𝒫AB
43 28 42 syl5 ωAAGCHBGCHAB𝒫B⊔︀BB⊔︀𝒫A𝒫AB
44 27 43 sylbird ωAAGCHBGCHAB𝒫BB⊔︀𝒫A𝒫AB
45 16 44 syld ωAAGCHBGCHAB𝒫A⊔︀B𝒫B𝒫AB
46 djudoml BGCH𝒫AVBB⊔︀𝒫A
47 3 2 46 syl2anc ωAAGCHBGCHABBB⊔︀𝒫A
48 domentr BB⊔︀𝒫AB⊔︀𝒫A𝒫A⊔︀BB𝒫A⊔︀B
49 47 9 48 syl2anc ωAAGCHBGCHABB𝒫A⊔︀B
50 sdomdom ABAB
51 50 adantl ωAAGCHBGCHABAB
52 pwdom AB𝒫A𝒫B
53 51 52 syl ωAAGCHBGCHAB𝒫A𝒫B
54 djudom1 𝒫A𝒫BBGCH𝒫A⊔︀B𝒫B⊔︀B
55 53 3 54 syl2anc ωAAGCHBGCHAB𝒫A⊔︀B𝒫B⊔︀B
56 sdomdom B𝒫BB𝒫B
57 3 29 56 3syl ωAAGCHBGCHABB𝒫B
58 3 pwexd ωAAGCHBGCHAB𝒫BV
59 djudom2 B𝒫B𝒫BV𝒫B⊔︀B𝒫B⊔︀𝒫B
60 57 58 59 syl2anc ωAAGCHBGCHAB𝒫B⊔︀B𝒫B⊔︀𝒫B
61 domtr 𝒫A⊔︀B𝒫B⊔︀B𝒫B⊔︀B𝒫B⊔︀𝒫B𝒫A⊔︀B𝒫B⊔︀𝒫B
62 55 60 61 syl2anc ωAAGCHBGCHAB𝒫A⊔︀B𝒫B⊔︀𝒫B
63 pwdju1 BGCH𝒫B⊔︀𝒫B𝒫B⊔︀1𝑜
64 3 63 syl ωAAGCHBGCHAB𝒫B⊔︀𝒫B𝒫B⊔︀1𝑜
65 gchdju1 BGCH¬BFinB⊔︀1𝑜B
66 3 22 65 syl2anc ωAAGCHBGCHABB⊔︀1𝑜B
67 pwen B⊔︀1𝑜B𝒫B⊔︀1𝑜𝒫B
68 66 67 syl ωAAGCHBGCHAB𝒫B⊔︀1𝑜𝒫B
69 entr 𝒫B⊔︀𝒫B𝒫B⊔︀1𝑜𝒫B⊔︀1𝑜𝒫B𝒫B⊔︀𝒫B𝒫B
70 64 68 69 syl2anc ωAAGCHBGCHAB𝒫B⊔︀𝒫B𝒫B
71 domentr 𝒫A⊔︀B𝒫B⊔︀𝒫B𝒫B⊔︀𝒫B𝒫B𝒫A⊔︀B𝒫B
72 62 70 71 syl2anc ωAAGCHBGCHAB𝒫A⊔︀B𝒫B
73 gchor BGCH¬BFinB𝒫A⊔︀B𝒫A⊔︀B𝒫BB𝒫A⊔︀B𝒫A⊔︀B𝒫B
74 3 22 49 72 73 syl22anc ωAAGCHBGCHABB𝒫A⊔︀B𝒫A⊔︀B𝒫B
75 7 45 74 mpjaod ωAAGCHBGCHAB𝒫AB
76 75 ex ωAAGCHBGCHAB𝒫AB
77 reldom Rel
78 77 brrelex1i 𝒫AB𝒫AV
79 pwexb AV𝒫AV
80 canth2g AVA𝒫A
81 79 80 sylbir 𝒫AVA𝒫A
82 78 81 syl 𝒫ABA𝒫A
83 sdomdomtr A𝒫A𝒫ABAB
84 82 83 mpancom 𝒫ABAB
85 76 84 impbid1 ωAAGCHBGCHAB𝒫AB