| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl2 |
|- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> A e. GCH ) |
| 2 |
1
|
pwexd |
|- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ~P A e. _V ) |
| 3 |
|
simpl3 |
|- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> B e. GCH ) |
| 4 |
|
djudoml |
|- ( ( ~P A e. _V /\ B e. GCH ) -> ~P A ~<_ ( ~P A |_| B ) ) |
| 5 |
2 3 4
|
syl2anc |
|- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ~P A ~<_ ( ~P A |_| B ) ) |
| 6 |
|
domen2 |
|- ( B ~~ ( ~P A |_| B ) -> ( ~P A ~<_ B <-> ~P A ~<_ ( ~P A |_| B ) ) ) |
| 7 |
5 6
|
syl5ibrcom |
|- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( B ~~ ( ~P A |_| B ) -> ~P A ~<_ B ) ) |
| 8 |
|
djucomen |
|- ( ( B e. GCH /\ ~P A e. _V ) -> ( B |_| ~P A ) ~~ ( ~P A |_| B ) ) |
| 9 |
3 2 8
|
syl2anc |
|- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( B |_| ~P A ) ~~ ( ~P A |_| B ) ) |
| 10 |
|
entr |
|- ( ( ( B |_| ~P A ) ~~ ( ~P A |_| B ) /\ ( ~P A |_| B ) ~~ ~P B ) -> ( B |_| ~P A ) ~~ ~P B ) |
| 11 |
10
|
ex |
|- ( ( B |_| ~P A ) ~~ ( ~P A |_| B ) -> ( ( ~P A |_| B ) ~~ ~P B -> ( B |_| ~P A ) ~~ ~P B ) ) |
| 12 |
9 11
|
syl |
|- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( ( ~P A |_| B ) ~~ ~P B -> ( B |_| ~P A ) ~~ ~P B ) ) |
| 13 |
|
ensym |
|- ( ( B |_| ~P A ) ~~ ~P B -> ~P B ~~ ( B |_| ~P A ) ) |
| 14 |
|
endom |
|- ( ~P B ~~ ( B |_| ~P A ) -> ~P B ~<_ ( B |_| ~P A ) ) |
| 15 |
13 14
|
syl |
|- ( ( B |_| ~P A ) ~~ ~P B -> ~P B ~<_ ( B |_| ~P A ) ) |
| 16 |
12 15
|
syl6 |
|- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( ( ~P A |_| B ) ~~ ~P B -> ~P B ~<_ ( B |_| ~P A ) ) ) |
| 17 |
|
domsdomtr |
|- ( ( _om ~<_ A /\ A ~< B ) -> _om ~< B ) |
| 18 |
17
|
3ad2antl1 |
|- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> _om ~< B ) |
| 19 |
|
sdomnsym |
|- ( _om ~< B -> -. B ~< _om ) |
| 20 |
18 19
|
syl |
|- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> -. B ~< _om ) |
| 21 |
|
isfinite |
|- ( B e. Fin <-> B ~< _om ) |
| 22 |
20 21
|
sylnibr |
|- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> -. B e. Fin ) |
| 23 |
|
gchdjuidm |
|- ( ( B e. GCH /\ -. B e. Fin ) -> ( B |_| B ) ~~ B ) |
| 24 |
3 22 23
|
syl2anc |
|- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( B |_| B ) ~~ B ) |
| 25 |
|
pwen |
|- ( ( B |_| B ) ~~ B -> ~P ( B |_| B ) ~~ ~P B ) |
| 26 |
|
domen1 |
|- ( ~P ( B |_| B ) ~~ ~P B -> ( ~P ( B |_| B ) ~<_ ( B |_| ~P A ) <-> ~P B ~<_ ( B |_| ~P A ) ) ) |
| 27 |
24 25 26
|
3syl |
|- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( ~P ( B |_| B ) ~<_ ( B |_| ~P A ) <-> ~P B ~<_ ( B |_| ~P A ) ) ) |
| 28 |
|
pwdjudom |
|- ( ~P ( B |_| B ) ~<_ ( B |_| ~P A ) -> ~P B ~<_ ~P A ) |
| 29 |
|
canth2g |
|- ( B e. GCH -> B ~< ~P B ) |
| 30 |
|
sdomdomtr |
|- ( ( B ~< ~P B /\ ~P B ~<_ ~P A ) -> B ~< ~P A ) |
| 31 |
30
|
ex |
|- ( B ~< ~P B -> ( ~P B ~<_ ~P A -> B ~< ~P A ) ) |
| 32 |
3 29 31
|
3syl |
|- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( ~P B ~<_ ~P A -> B ~< ~P A ) ) |
| 33 |
|
gchi |
|- ( ( A e. GCH /\ A ~< B /\ B ~< ~P A ) -> A e. Fin ) |
| 34 |
33
|
3expia |
|- ( ( A e. GCH /\ A ~< B ) -> ( B ~< ~P A -> A e. Fin ) ) |
| 35 |
34
|
3ad2antl2 |
|- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( B ~< ~P A -> A e. Fin ) ) |
| 36 |
|
isfinite |
|- ( A e. Fin <-> A ~< _om ) |
| 37 |
|
simpl1 |
|- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> _om ~<_ A ) |
| 38 |
|
domnsym |
|- ( _om ~<_ A -> -. A ~< _om ) |
| 39 |
37 38
|
syl |
|- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> -. A ~< _om ) |
| 40 |
39
|
pm2.21d |
|- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( A ~< _om -> ~P A ~<_ B ) ) |
| 41 |
36 40
|
biimtrid |
|- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( A e. Fin -> ~P A ~<_ B ) ) |
| 42 |
32 35 41
|
3syld |
|- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( ~P B ~<_ ~P A -> ~P A ~<_ B ) ) |
| 43 |
28 42
|
syl5 |
|- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( ~P ( B |_| B ) ~<_ ( B |_| ~P A ) -> ~P A ~<_ B ) ) |
| 44 |
27 43
|
sylbird |
|- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( ~P B ~<_ ( B |_| ~P A ) -> ~P A ~<_ B ) ) |
| 45 |
16 44
|
syld |
|- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( ( ~P A |_| B ) ~~ ~P B -> ~P A ~<_ B ) ) |
| 46 |
|
djudoml |
|- ( ( B e. GCH /\ ~P A e. _V ) -> B ~<_ ( B |_| ~P A ) ) |
| 47 |
3 2 46
|
syl2anc |
|- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> B ~<_ ( B |_| ~P A ) ) |
| 48 |
|
domentr |
|- ( ( B ~<_ ( B |_| ~P A ) /\ ( B |_| ~P A ) ~~ ( ~P A |_| B ) ) -> B ~<_ ( ~P A |_| B ) ) |
| 49 |
47 9 48
|
syl2anc |
|- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> B ~<_ ( ~P A |_| B ) ) |
| 50 |
|
sdomdom |
|- ( A ~< B -> A ~<_ B ) |
| 51 |
50
|
adantl |
|- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> A ~<_ B ) |
| 52 |
|
pwdom |
|- ( A ~<_ B -> ~P A ~<_ ~P B ) |
| 53 |
51 52
|
syl |
|- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ~P A ~<_ ~P B ) |
| 54 |
|
djudom1 |
|- ( ( ~P A ~<_ ~P B /\ B e. GCH ) -> ( ~P A |_| B ) ~<_ ( ~P B |_| B ) ) |
| 55 |
53 3 54
|
syl2anc |
|- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( ~P A |_| B ) ~<_ ( ~P B |_| B ) ) |
| 56 |
|
sdomdom |
|- ( B ~< ~P B -> B ~<_ ~P B ) |
| 57 |
3 29 56
|
3syl |
|- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> B ~<_ ~P B ) |
| 58 |
3
|
pwexd |
|- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ~P B e. _V ) |
| 59 |
|
djudom2 |
|- ( ( B ~<_ ~P B /\ ~P B e. _V ) -> ( ~P B |_| B ) ~<_ ( ~P B |_| ~P B ) ) |
| 60 |
57 58 59
|
syl2anc |
|- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( ~P B |_| B ) ~<_ ( ~P B |_| ~P B ) ) |
| 61 |
|
domtr |
|- ( ( ( ~P A |_| B ) ~<_ ( ~P B |_| B ) /\ ( ~P B |_| B ) ~<_ ( ~P B |_| ~P B ) ) -> ( ~P A |_| B ) ~<_ ( ~P B |_| ~P B ) ) |
| 62 |
55 60 61
|
syl2anc |
|- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( ~P A |_| B ) ~<_ ( ~P B |_| ~P B ) ) |
| 63 |
|
pwdju1 |
|- ( B e. GCH -> ( ~P B |_| ~P B ) ~~ ~P ( B |_| 1o ) ) |
| 64 |
3 63
|
syl |
|- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( ~P B |_| ~P B ) ~~ ~P ( B |_| 1o ) ) |
| 65 |
|
gchdju1 |
|- ( ( B e. GCH /\ -. B e. Fin ) -> ( B |_| 1o ) ~~ B ) |
| 66 |
3 22 65
|
syl2anc |
|- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( B |_| 1o ) ~~ B ) |
| 67 |
|
pwen |
|- ( ( B |_| 1o ) ~~ B -> ~P ( B |_| 1o ) ~~ ~P B ) |
| 68 |
66 67
|
syl |
|- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ~P ( B |_| 1o ) ~~ ~P B ) |
| 69 |
|
entr |
|- ( ( ( ~P B |_| ~P B ) ~~ ~P ( B |_| 1o ) /\ ~P ( B |_| 1o ) ~~ ~P B ) -> ( ~P B |_| ~P B ) ~~ ~P B ) |
| 70 |
64 68 69
|
syl2anc |
|- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( ~P B |_| ~P B ) ~~ ~P B ) |
| 71 |
|
domentr |
|- ( ( ( ~P A |_| B ) ~<_ ( ~P B |_| ~P B ) /\ ( ~P B |_| ~P B ) ~~ ~P B ) -> ( ~P A |_| B ) ~<_ ~P B ) |
| 72 |
62 70 71
|
syl2anc |
|- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( ~P A |_| B ) ~<_ ~P B ) |
| 73 |
|
gchor |
|- ( ( ( B e. GCH /\ -. B e. Fin ) /\ ( B ~<_ ( ~P A |_| B ) /\ ( ~P A |_| B ) ~<_ ~P B ) ) -> ( B ~~ ( ~P A |_| B ) \/ ( ~P A |_| B ) ~~ ~P B ) ) |
| 74 |
3 22 49 72 73
|
syl22anc |
|- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( B ~~ ( ~P A |_| B ) \/ ( ~P A |_| B ) ~~ ~P B ) ) |
| 75 |
7 45 74
|
mpjaod |
|- ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ~P A ~<_ B ) |
| 76 |
75
|
ex |
|- ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) -> ( A ~< B -> ~P A ~<_ B ) ) |
| 77 |
|
reldom |
|- Rel ~<_ |
| 78 |
77
|
brrelex1i |
|- ( ~P A ~<_ B -> ~P A e. _V ) |
| 79 |
|
pwexb |
|- ( A e. _V <-> ~P A e. _V ) |
| 80 |
|
canth2g |
|- ( A e. _V -> A ~< ~P A ) |
| 81 |
79 80
|
sylbir |
|- ( ~P A e. _V -> A ~< ~P A ) |
| 82 |
78 81
|
syl |
|- ( ~P A ~<_ B -> A ~< ~P A ) |
| 83 |
|
sdomdomtr |
|- ( ( A ~< ~P A /\ ~P A ~<_ B ) -> A ~< B ) |
| 84 |
82 83
|
mpancom |
|- ( ~P A ~<_ B -> A ~< B ) |
| 85 |
76 84
|
impbid1 |
|- ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) -> ( A ~< B <-> ~P A ~<_ B ) ) |