Metamath Proof Explorer


Theorem gchxpidm

Description: An infinite GCH-set is idempotent under cardinal product. Part of Lemma 2.2 of KanamoriPincus p. 419. (Contributed by Mario Carneiro, 31-May-2015)

Ref Expression
Assertion gchxpidm A GCH ¬ A Fin A × A A

Proof

Step Hyp Ref Expression
1 0ex V
2 1 a1i ¬ A Fin V
3 xpsneng A GCH V A × A
4 2 3 sylan2 A GCH ¬ A Fin A × A
5 4 ensymd A GCH ¬ A Fin A A ×
6 df1o2 1 𝑜 =
7 id A = A =
8 0fin Fin
9 7 8 eqeltrdi A = A Fin
10 9 necon3bi ¬ A Fin A
11 10 adantl A GCH ¬ A Fin A
12 0sdomg A GCH A A
13 12 adantr A GCH ¬ A Fin A A
14 11 13 mpbird A GCH ¬ A Fin A
15 0sdom1dom A 1 𝑜 A
16 14 15 sylib A GCH ¬ A Fin 1 𝑜 A
17 6 16 eqbrtrrid A GCH ¬ A Fin A
18 xpdom2g A GCH A A × A × A
19 17 18 syldan A GCH ¬ A Fin A × A × A
20 endomtr A A × A × A × A A A × A
21 5 19 20 syl2anc A GCH ¬ A Fin A A × A
22 canth2g A GCH A 𝒫 A
23 22 adantr A GCH ¬ A Fin A 𝒫 A
24 sdomdom A 𝒫 A A 𝒫 A
25 23 24 syl A GCH ¬ A Fin A 𝒫 A
26 xpdom1g A GCH A 𝒫 A A × A 𝒫 A × A
27 25 26 syldan A GCH ¬ A Fin A × A 𝒫 A × A
28 pwexg A GCH 𝒫 A V
29 28 adantr A GCH ¬ A Fin 𝒫 A V
30 xpdom2g 𝒫 A V A 𝒫 A 𝒫 A × A 𝒫 A × 𝒫 A
31 29 25 30 syl2anc A GCH ¬ A Fin 𝒫 A × A 𝒫 A × 𝒫 A
32 domtr A × A 𝒫 A × A 𝒫 A × A 𝒫 A × 𝒫 A A × A 𝒫 A × 𝒫 A
33 27 31 32 syl2anc A GCH ¬ A Fin A × A 𝒫 A × 𝒫 A
34 simpl A GCH ¬ A Fin A GCH
35 pwdjuen A GCH A GCH 𝒫 A ⊔︀ A 𝒫 A × 𝒫 A
36 34 35 syldan A GCH ¬ A Fin 𝒫 A ⊔︀ A 𝒫 A × 𝒫 A
37 36 ensymd A GCH ¬ A Fin 𝒫 A × 𝒫 A 𝒫 A ⊔︀ A
38 gchdjuidm A GCH ¬ A Fin A ⊔︀ A A
39 pwen A ⊔︀ A A 𝒫 A ⊔︀ A 𝒫 A
40 38 39 syl A GCH ¬ A Fin 𝒫 A ⊔︀ A 𝒫 A
41 entr 𝒫 A × 𝒫 A 𝒫 A ⊔︀ A 𝒫 A ⊔︀ A 𝒫 A 𝒫 A × 𝒫 A 𝒫 A
42 37 40 41 syl2anc A GCH ¬ A Fin 𝒫 A × 𝒫 A 𝒫 A
43 domentr A × A 𝒫 A × 𝒫 A 𝒫 A × 𝒫 A 𝒫 A A × A 𝒫 A
44 33 42 43 syl2anc A GCH ¬ A Fin A × A 𝒫 A
45 gchinf A GCH ¬ A Fin ω A
46 pwxpndom ω A ¬ 𝒫 A A × A
47 45 46 syl A GCH ¬ A Fin ¬ 𝒫 A A × A
48 ensym A × A 𝒫 A 𝒫 A A × A
49 endom 𝒫 A A × A 𝒫 A A × A
50 48 49 syl A × A 𝒫 A 𝒫 A A × A
51 47 50 nsyl A GCH ¬ A Fin ¬ A × A 𝒫 A
52 brsdom A × A 𝒫 A A × A 𝒫 A ¬ A × A 𝒫 A
53 44 51 52 sylanbrc A GCH ¬ A Fin A × A 𝒫 A
54 21 53 jca A GCH ¬ A Fin A A × A A × A 𝒫 A
55 gchen1 A GCH ¬ A Fin A A × A A × A 𝒫 A A A × A
56 54 55 mpdan A GCH ¬ A Fin A A × A
57 56 ensymd A GCH ¬ A Fin A × A A