Step |
Hyp |
Ref |
Expression |
1 |
|
pwxpndom2 |
⊢ ( ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) ) |
2 |
|
df1o2 |
⊢ 1o = { ∅ } |
3 |
2
|
xpeq1i |
⊢ ( 1o × 𝐴 ) = ( { ∅ } × 𝐴 ) |
4 |
|
0ex |
⊢ ∅ ∈ V |
5 |
|
reldom |
⊢ Rel ≼ |
6 |
5
|
brrelex2i |
⊢ ( ω ≼ 𝐴 → 𝐴 ∈ V ) |
7 |
|
xpsnen2g |
⊢ ( ( ∅ ∈ V ∧ 𝐴 ∈ V ) → ( { ∅ } × 𝐴 ) ≈ 𝐴 ) |
8 |
4 6 7
|
sylancr |
⊢ ( ω ≼ 𝐴 → ( { ∅ } × 𝐴 ) ≈ 𝐴 ) |
9 |
3 8
|
eqbrtrid |
⊢ ( ω ≼ 𝐴 → ( 1o × 𝐴 ) ≈ 𝐴 ) |
10 |
9
|
ensymd |
⊢ ( ω ≼ 𝐴 → 𝐴 ≈ ( 1o × 𝐴 ) ) |
11 |
|
omex |
⊢ ω ∈ V |
12 |
|
ordom |
⊢ Ord ω |
13 |
|
1onn |
⊢ 1o ∈ ω |
14 |
|
ordelss |
⊢ ( ( Ord ω ∧ 1o ∈ ω ) → 1o ⊆ ω ) |
15 |
12 13 14
|
mp2an |
⊢ 1o ⊆ ω |
16 |
|
ssdomg |
⊢ ( ω ∈ V → ( 1o ⊆ ω → 1o ≼ ω ) ) |
17 |
11 15 16
|
mp2 |
⊢ 1o ≼ ω |
18 |
|
domtr |
⊢ ( ( 1o ≼ ω ∧ ω ≼ 𝐴 ) → 1o ≼ 𝐴 ) |
19 |
17 18
|
mpan |
⊢ ( ω ≼ 𝐴 → 1o ≼ 𝐴 ) |
20 |
|
xpdom1g |
⊢ ( ( 𝐴 ∈ V ∧ 1o ≼ 𝐴 ) → ( 1o × 𝐴 ) ≼ ( 𝐴 × 𝐴 ) ) |
21 |
6 19 20
|
syl2anc |
⊢ ( ω ≼ 𝐴 → ( 1o × 𝐴 ) ≼ ( 𝐴 × 𝐴 ) ) |
22 |
|
endomtr |
⊢ ( ( 𝐴 ≈ ( 1o × 𝐴 ) ∧ ( 1o × 𝐴 ) ≼ ( 𝐴 × 𝐴 ) ) → 𝐴 ≼ ( 𝐴 × 𝐴 ) ) |
23 |
10 21 22
|
syl2anc |
⊢ ( ω ≼ 𝐴 → 𝐴 ≼ ( 𝐴 × 𝐴 ) ) |
24 |
|
djudom2 |
⊢ ( ( 𝐴 ≼ ( 𝐴 × 𝐴 ) ∧ 𝐴 ∈ V ) → ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) ) |
25 |
23 6 24
|
syl2anc |
⊢ ( ω ≼ 𝐴 → ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) ) |
26 |
|
domtr |
⊢ ( ( 𝒫 𝐴 ≼ ( 𝐴 ⊔ 𝐴 ) ∧ ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) ) → 𝒫 𝐴 ≼ ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) ) |
27 |
26
|
expcom |
⊢ ( ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) → ( 𝒫 𝐴 ≼ ( 𝐴 ⊔ 𝐴 ) → 𝒫 𝐴 ≼ ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) ) ) |
28 |
25 27
|
syl |
⊢ ( ω ≼ 𝐴 → ( 𝒫 𝐴 ≼ ( 𝐴 ⊔ 𝐴 ) → 𝒫 𝐴 ≼ ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) ) ) |
29 |
1 28
|
mtod |
⊢ ( ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ ( 𝐴 ⊔ 𝐴 ) ) |