Step |
Hyp |
Ref |
Expression |
1 |
|
pwxpndom2 |
|- ( _om ~<_ A -> -. ~P A ~<_ ( A |_| ( A X. A ) ) ) |
2 |
|
df1o2 |
|- 1o = { (/) } |
3 |
2
|
xpeq1i |
|- ( 1o X. A ) = ( { (/) } X. A ) |
4 |
|
0ex |
|- (/) e. _V |
5 |
|
reldom |
|- Rel ~<_ |
6 |
5
|
brrelex2i |
|- ( _om ~<_ A -> A e. _V ) |
7 |
|
xpsnen2g |
|- ( ( (/) e. _V /\ A e. _V ) -> ( { (/) } X. A ) ~~ A ) |
8 |
4 6 7
|
sylancr |
|- ( _om ~<_ A -> ( { (/) } X. A ) ~~ A ) |
9 |
3 8
|
eqbrtrid |
|- ( _om ~<_ A -> ( 1o X. A ) ~~ A ) |
10 |
9
|
ensymd |
|- ( _om ~<_ A -> A ~~ ( 1o X. A ) ) |
11 |
|
omex |
|- _om e. _V |
12 |
|
ordom |
|- Ord _om |
13 |
|
1onn |
|- 1o e. _om |
14 |
|
ordelss |
|- ( ( Ord _om /\ 1o e. _om ) -> 1o C_ _om ) |
15 |
12 13 14
|
mp2an |
|- 1o C_ _om |
16 |
|
ssdomg |
|- ( _om e. _V -> ( 1o C_ _om -> 1o ~<_ _om ) ) |
17 |
11 15 16
|
mp2 |
|- 1o ~<_ _om |
18 |
|
domtr |
|- ( ( 1o ~<_ _om /\ _om ~<_ A ) -> 1o ~<_ A ) |
19 |
17 18
|
mpan |
|- ( _om ~<_ A -> 1o ~<_ A ) |
20 |
|
xpdom1g |
|- ( ( A e. _V /\ 1o ~<_ A ) -> ( 1o X. A ) ~<_ ( A X. A ) ) |
21 |
6 19 20
|
syl2anc |
|- ( _om ~<_ A -> ( 1o X. A ) ~<_ ( A X. A ) ) |
22 |
|
endomtr |
|- ( ( A ~~ ( 1o X. A ) /\ ( 1o X. A ) ~<_ ( A X. A ) ) -> A ~<_ ( A X. A ) ) |
23 |
10 21 22
|
syl2anc |
|- ( _om ~<_ A -> A ~<_ ( A X. A ) ) |
24 |
|
djudom2 |
|- ( ( A ~<_ ( A X. A ) /\ A e. _V ) -> ( A |_| A ) ~<_ ( A |_| ( A X. A ) ) ) |
25 |
23 6 24
|
syl2anc |
|- ( _om ~<_ A -> ( A |_| A ) ~<_ ( A |_| ( A X. A ) ) ) |
26 |
|
domtr |
|- ( ( ~P A ~<_ ( A |_| A ) /\ ( A |_| A ) ~<_ ( A |_| ( A X. A ) ) ) -> ~P A ~<_ ( A |_| ( A X. A ) ) ) |
27 |
26
|
expcom |
|- ( ( A |_| A ) ~<_ ( A |_| ( A X. A ) ) -> ( ~P A ~<_ ( A |_| A ) -> ~P A ~<_ ( A |_| ( A X. A ) ) ) ) |
28 |
25 27
|
syl |
|- ( _om ~<_ A -> ( ~P A ~<_ ( A |_| A ) -> ~P A ~<_ ( A |_| ( A X. A ) ) ) ) |
29 |
1 28
|
mtod |
|- ( _om ~<_ A -> -. ~P A ~<_ ( A |_| A ) ) |