Metamath Proof Explorer


Theorem gchhar

Description: A "local" form of gchac . If A and ~P A are GCH-sets, then the Hartogs number of A is ~P A (so ~P A and a fortiori A are well-orderable). The proof is due to Specker. Theorem 2.1 of KanamoriPincus p. 419. (Contributed by Mario Carneiro, 31-May-2015)

Ref Expression
Assertion gchhar ωAAGCH𝒫AGCHharA𝒫A

Proof

Step Hyp Ref Expression
1 harcl harAOn
2 simp3 ωAAGCH𝒫AGCH𝒫AGCH
3 djudoml harAOn𝒫AGCHharAharA⊔︀𝒫A
4 1 2 3 sylancr ωAAGCH𝒫AGCHharAharA⊔︀𝒫A
5 domnsym ωA¬Aω
6 5 3ad2ant1 ωAAGCH𝒫AGCH¬Aω
7 isfinite AFinAω
8 6 7 sylnibr ωAAGCH𝒫AGCH¬AFin
9 pwfi AFin𝒫AFin
10 8 9 sylnib ωAAGCH𝒫AGCH¬𝒫AFin
11 djudoml 𝒫AGCHharAOn𝒫A𝒫A⊔︀harA
12 2 1 11 sylancl ωAAGCH𝒫AGCH𝒫A𝒫A⊔︀harA
13 fvexd ωAAGCH𝒫AGCHharAV
14 djuex 𝒫AGCHharAV𝒫A⊔︀harAV
15 2 13 14 syl2anc ωAAGCH𝒫AGCH𝒫A⊔︀harAV
16 canth2g 𝒫A⊔︀harAV𝒫A⊔︀harA𝒫𝒫A⊔︀harA
17 15 16 syl ωAAGCH𝒫AGCH𝒫A⊔︀harA𝒫𝒫A⊔︀harA
18 pwdjuen 𝒫AGCHharAOn𝒫𝒫A⊔︀harA𝒫𝒫A×𝒫harA
19 2 1 18 sylancl ωAAGCH𝒫AGCH𝒫𝒫A⊔︀harA𝒫𝒫A×𝒫harA
20 2 pwexd ωAAGCH𝒫AGCH𝒫𝒫AV
21 simp2 ωAAGCH𝒫AGCHAGCH
22 harwdom AGCHharA*𝒫A×A
23 wdompwdom harA*𝒫A×A𝒫harA𝒫𝒫A×A
24 21 22 23 3syl ωAAGCH𝒫AGCH𝒫harA𝒫𝒫A×A
25 xpdom2g 𝒫𝒫AV𝒫harA𝒫𝒫A×A𝒫𝒫A×𝒫harA𝒫𝒫A×𝒫𝒫A×A
26 20 24 25 syl2anc ωAAGCH𝒫AGCH𝒫𝒫A×𝒫harA𝒫𝒫A×𝒫𝒫A×A
27 21 21 xpexd ωAAGCH𝒫AGCHA×AV
28 27 pwexd ωAAGCH𝒫AGCH𝒫A×AV
29 pwdjuen 𝒫AGCH𝒫A×AV𝒫𝒫A⊔︀𝒫A×A𝒫𝒫A×𝒫𝒫A×A
30 2 28 29 syl2anc ωAAGCH𝒫AGCH𝒫𝒫A⊔︀𝒫A×A𝒫𝒫A×𝒫𝒫A×A
31 30 ensymd ωAAGCH𝒫AGCH𝒫𝒫A×𝒫𝒫A×A𝒫𝒫A⊔︀𝒫A×A
32 enrefg 𝒫AGCH𝒫A𝒫A
33 2 32 syl ωAAGCH𝒫AGCH𝒫A𝒫A
34 gchxpidm AGCH¬AFinA×AA
35 21 8 34 syl2anc ωAAGCH𝒫AGCHA×AA
36 pwen A×AA𝒫A×A𝒫A
37 35 36 syl ωAAGCH𝒫AGCH𝒫A×A𝒫A
38 djuen 𝒫A𝒫A𝒫A×A𝒫A𝒫A⊔︀𝒫A×A𝒫A⊔︀𝒫A
39 33 37 38 syl2anc ωAAGCH𝒫AGCH𝒫A⊔︀𝒫A×A𝒫A⊔︀𝒫A
40 gchdjuidm 𝒫AGCH¬𝒫AFin𝒫A⊔︀𝒫A𝒫A
41 2 10 40 syl2anc ωAAGCH𝒫AGCH𝒫A⊔︀𝒫A𝒫A
42 entr 𝒫A⊔︀𝒫A×A𝒫A⊔︀𝒫A𝒫A⊔︀𝒫A𝒫A𝒫A⊔︀𝒫A×A𝒫A
43 39 41 42 syl2anc ωAAGCH𝒫AGCH𝒫A⊔︀𝒫A×A𝒫A
44 pwen 𝒫A⊔︀𝒫A×A𝒫A𝒫𝒫A⊔︀𝒫A×A𝒫𝒫A
45 43 44 syl ωAAGCH𝒫AGCH𝒫𝒫A⊔︀𝒫A×A𝒫𝒫A
46 entr 𝒫𝒫A×𝒫𝒫A×A𝒫𝒫A⊔︀𝒫A×A𝒫𝒫A⊔︀𝒫A×A𝒫𝒫A𝒫𝒫A×𝒫𝒫A×A𝒫𝒫A
47 31 45 46 syl2anc ωAAGCH𝒫AGCH𝒫𝒫A×𝒫𝒫A×A𝒫𝒫A
48 domentr 𝒫𝒫A×𝒫harA𝒫𝒫A×𝒫𝒫A×A𝒫𝒫A×𝒫𝒫A×A𝒫𝒫A𝒫𝒫A×𝒫harA𝒫𝒫A
49 26 47 48 syl2anc ωAAGCH𝒫AGCH𝒫𝒫A×𝒫harA𝒫𝒫A
50 endomtr 𝒫𝒫A⊔︀harA𝒫𝒫A×𝒫harA𝒫𝒫A×𝒫harA𝒫𝒫A𝒫𝒫A⊔︀harA𝒫𝒫A
51 19 49 50 syl2anc ωAAGCH𝒫AGCH𝒫𝒫A⊔︀harA𝒫𝒫A
52 sdomdomtr 𝒫A⊔︀harA𝒫𝒫A⊔︀harA𝒫𝒫A⊔︀harA𝒫𝒫A𝒫A⊔︀harA𝒫𝒫A
53 17 51 52 syl2anc ωAAGCH𝒫AGCH𝒫A⊔︀harA𝒫𝒫A
54 gchen1 𝒫AGCH¬𝒫AFin𝒫A𝒫A⊔︀harA𝒫A⊔︀harA𝒫𝒫A𝒫A𝒫A⊔︀harA
55 2 10 12 53 54 syl22anc ωAAGCH𝒫AGCH𝒫A𝒫A⊔︀harA
56 djucomen 𝒫AGCHharAV𝒫A⊔︀harAharA⊔︀𝒫A
57 2 13 56 syl2anc ωAAGCH𝒫AGCH𝒫A⊔︀harAharA⊔︀𝒫A
58 entr 𝒫A𝒫A⊔︀harA𝒫A⊔︀harAharA⊔︀𝒫A𝒫AharA⊔︀𝒫A
59 55 57 58 syl2anc ωAAGCH𝒫AGCH𝒫AharA⊔︀𝒫A
60 59 ensymd ωAAGCH𝒫AGCHharA⊔︀𝒫A𝒫A
61 domentr harAharA⊔︀𝒫AharA⊔︀𝒫A𝒫AharA𝒫A
62 4 60 61 syl2anc ωAAGCH𝒫AGCHharA𝒫A
63 gchdjuidm AGCH¬AFinA⊔︀AA
64 21 8 63 syl2anc ωAAGCH𝒫AGCHA⊔︀AA
65 pwen A⊔︀AA𝒫A⊔︀A𝒫A
66 64 65 syl ωAAGCH𝒫AGCH𝒫A⊔︀A𝒫A
67 djudoml AGCHharAOnAA⊔︀harA
68 21 1 67 sylancl ωAAGCH𝒫AGCHAA⊔︀harA
69 harndom ¬harAA
70 djudoml harAOnAGCHharAharA⊔︀A
71 1 21 70 sylancr ωAAGCH𝒫AGCHharAharA⊔︀A
72 djucomen harAOnAGCHharA⊔︀AA⊔︀harA
73 1 21 72 sylancr ωAAGCH𝒫AGCHharA⊔︀AA⊔︀harA
74 domentr harAharA⊔︀AharA⊔︀AA⊔︀harAharAA⊔︀harA
75 71 73 74 syl2anc ωAAGCH𝒫AGCHharAA⊔︀harA
76 domen2 AA⊔︀harAharAAharAA⊔︀harA
77 75 76 syl5ibrcom ωAAGCH𝒫AGCHAA⊔︀harAharAA
78 69 77 mtoi ωAAGCH𝒫AGCH¬AA⊔︀harA
79 brsdom AA⊔︀harAAA⊔︀harA¬AA⊔︀harA
80 68 78 79 sylanbrc ωAAGCH𝒫AGCHAA⊔︀harA
81 canth2g AGCHA𝒫A
82 sdomdom A𝒫AA𝒫A
83 21 81 82 3syl ωAAGCH𝒫AGCHA𝒫A
84 djudom1 A𝒫AharAOnA⊔︀harA𝒫A⊔︀harA
85 83 1 84 sylancl ωAAGCH𝒫AGCHA⊔︀harA𝒫A⊔︀harA
86 djudom2 harA𝒫A𝒫AGCH𝒫A⊔︀harA𝒫A⊔︀𝒫A
87 62 2 86 syl2anc ωAAGCH𝒫AGCH𝒫A⊔︀harA𝒫A⊔︀𝒫A
88 domtr A⊔︀harA𝒫A⊔︀harA𝒫A⊔︀harA𝒫A⊔︀𝒫AA⊔︀harA𝒫A⊔︀𝒫A
89 85 87 88 syl2anc ωAAGCH𝒫AGCHA⊔︀harA𝒫A⊔︀𝒫A
90 domentr A⊔︀harA𝒫A⊔︀𝒫A𝒫A⊔︀𝒫A𝒫AA⊔︀harA𝒫A
91 89 41 90 syl2anc ωAAGCH𝒫AGCHA⊔︀harA𝒫A
92 gchen2 AGCH¬AFinAA⊔︀harAA⊔︀harA𝒫AA⊔︀harA𝒫A
93 21 8 80 91 92 syl22anc ωAAGCH𝒫AGCHA⊔︀harA𝒫A
94 93 ensymd ωAAGCH𝒫AGCH𝒫AA⊔︀harA
95 entr 𝒫A⊔︀A𝒫A𝒫AA⊔︀harA𝒫A⊔︀AA⊔︀harA
96 66 94 95 syl2anc ωAAGCH𝒫AGCH𝒫A⊔︀AA⊔︀harA
97 endom 𝒫A⊔︀AA⊔︀harA𝒫A⊔︀AA⊔︀harA
98 pwdjudom 𝒫A⊔︀AA⊔︀harA𝒫AharA
99 96 97 98 3syl ωAAGCH𝒫AGCH𝒫AharA
100 sbth harA𝒫A𝒫AharAharA𝒫A
101 62 99 100 syl2anc ωAAGCH𝒫AGCHharA𝒫A