Metamath Proof Explorer


Theorem harwdom

Description: The value of the Hartogs function at a set X is weakly dominated by ~P ( X X. X ) . This follows from a more precise analysis of the bound used in hartogs to prove that ( harX ) is an ordinal. (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion harwdom XVharX*𝒫X×X

Proof

Step Hyp Ref Expression
1 eqid ry|domrXIdomrrrdomr×domrrIWedomry=domOrdIsorIdomr=ry|domrXIdomrrrdomr×domrrIWedomry=domOrdIsorIdomr
2 eqid st|wyzys=fwt=fzwEz=st|wyzys=fwt=fzwEz
3 1 2 hartogslem1 domry|domrXIdomrrrdomr×domrrIWedomry=domOrdIsorIdomr𝒫X×XFunry|domrXIdomrrrdomr×domrrIWedomry=domOrdIsorIdomrXVranry|domrXIdomrrrdomr×domrrIWedomry=domOrdIsorIdomr=xOn|xX
4 3 simp2i Funry|domrXIdomrrrdomr×domrrIWedomry=domOrdIsorIdomr
5 3 simp1i domry|domrXIdomrrrdomr×domrrIWedomry=domOrdIsorIdomr𝒫X×X
6 sqxpexg XVX×XV
7 6 pwexd XV𝒫X×XV
8 ssexg domry|domrXIdomrrrdomr×domrrIWedomry=domOrdIsorIdomr𝒫X×X𝒫X×XVdomry|domrXIdomrrrdomr×domrrIWedomry=domOrdIsorIdomrV
9 5 7 8 sylancr XVdomry|domrXIdomrrrdomr×domrrIWedomry=domOrdIsorIdomrV
10 funex Funry|domrXIdomrrrdomr×domrrIWedomry=domOrdIsorIdomrdomry|domrXIdomrrrdomr×domrrIWedomry=domOrdIsorIdomrVry|domrXIdomrrrdomr×domrrIWedomry=domOrdIsorIdomrV
11 4 9 10 sylancr XVry|domrXIdomrrrdomr×domrrIWedomry=domOrdIsorIdomrV
12 funfn Funry|domrXIdomrrrdomr×domrrIWedomry=domOrdIsorIdomrry|domrXIdomrrrdomr×domrrIWedomry=domOrdIsorIdomrFndomry|domrXIdomrrrdomr×domrrIWedomry=domOrdIsorIdomr
13 4 12 mpbi ry|domrXIdomrrrdomr×domrrIWedomry=domOrdIsorIdomrFndomry|domrXIdomrrrdomr×domrrIWedomry=domOrdIsorIdomr
14 13 a1i XVry|domrXIdomrrrdomr×domrrIWedomry=domOrdIsorIdomrFndomry|domrXIdomrrrdomr×domrrIWedomry=domOrdIsorIdomr
15 3 simp3i XVranry|domrXIdomrrrdomr×domrrIWedomry=domOrdIsorIdomr=xOn|xX
16 harval XVharX=xOn|xX
17 15 16 eqtr4d XVranry|domrXIdomrrrdomr×domrrIWedomry=domOrdIsorIdomr=harX
18 df-fo ry|domrXIdomrrrdomr×domrrIWedomry=domOrdIsorIdomr:domry|domrXIdomrrrdomr×domrrIWedomry=domOrdIsorIdomrontoharXry|domrXIdomrrrdomr×domrrIWedomry=domOrdIsorIdomrFndomry|domrXIdomrrrdomr×domrrIWedomry=domOrdIsorIdomrranry|domrXIdomrrrdomr×domrrIWedomry=domOrdIsorIdomr=harX
19 14 17 18 sylanbrc XVry|domrXIdomrrrdomr×domrrIWedomry=domOrdIsorIdomr:domry|domrXIdomrrrdomr×domrrIWedomry=domOrdIsorIdomrontoharX
20 fowdom ry|domrXIdomrrrdomr×domrrIWedomry=domOrdIsorIdomrVry|domrXIdomrrrdomr×domrrIWedomry=domOrdIsorIdomr:domry|domrXIdomrrrdomr×domrrIWedomry=domOrdIsorIdomrontoharXharX*domry|domrXIdomrrrdomr×domrrIWedomry=domOrdIsorIdomr
21 11 19 20 syl2anc XVharX*domry|domrXIdomrrrdomr×domrrIWedomry=domOrdIsorIdomr
22 ssdomg 𝒫X×XVdomry|domrXIdomrrrdomr×domrrIWedomry=domOrdIsorIdomr𝒫X×Xdomry|domrXIdomrrrdomr×domrrIWedomry=domOrdIsorIdomr𝒫X×X
23 7 5 22 mpisyl XVdomry|domrXIdomrrrdomr×domrrIWedomry=domOrdIsorIdomr𝒫X×X
24 domwdom domry|domrXIdomrrrdomr×domrrIWedomry=domOrdIsorIdomr𝒫X×Xdomry|domrXIdomrrrdomr×domrrIWedomry=domOrdIsorIdomr*𝒫X×X
25 23 24 syl XVdomry|domrXIdomrrrdomr×domrrIWedomry=domOrdIsorIdomr*𝒫X×X
26 wdomtr harX*domry|domrXIdomrrrdomr×domrrIWedomry=domOrdIsorIdomrdomry|domrXIdomrrrdomr×domrrIWedomry=domOrdIsorIdomr*𝒫X×XharX*𝒫X×X
27 21 25 26 syl2anc XVharX*𝒫X×X