| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gchaclem.1 |  | 
						
							| 2 |  | gchaclem.3 |  | 
						
							| 3 |  | gchaclem.4 |  | 
						
							| 4 | 3 | simpld |  | 
						
							| 5 |  | reldom |  | 
						
							| 6 | 5 | brrelex2i |  | 
						
							| 7 | 4 6 | syl |  | 
						
							| 8 |  | canth2g |  | 
						
							| 9 |  | sdomdom |  | 
						
							| 10 | 7 8 9 | 3syl |  | 
						
							| 11 |  | domtr |  | 
						
							| 12 | 4 10 11 | syl2anc |  | 
						
							| 13 | 2 | adantr |  | 
						
							| 14 |  | domtr |  | 
						
							| 15 | 1 4 14 | syl2anc |  | 
						
							| 16 | 15 | adantr |  | 
						
							| 17 |  | pwdjuidm |  | 
						
							| 18 | 16 17 | syl |  | 
						
							| 19 |  | simpr |  | 
						
							| 20 |  | gchdomtri |  | 
						
							| 21 | 13 18 19 20 | syl3anc |  | 
						
							| 22 | 21 | ex |  | 
						
							| 23 |  | pwdom |  | 
						
							| 24 |  | domtr |  | 
						
							| 25 | 24 | ex |  | 
						
							| 26 | 4 23 25 | 3syl |  | 
						
							| 27 | 3 | simprd |  | 
						
							| 28 | 26 27 | jaod |  | 
						
							| 29 | 22 28 | syld |  | 
						
							| 30 | 12 29 | jca |  |