| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpfo.1 | ⊢ 𝑋  =  ran  𝐺 | 
						
							| 2 |  | simprr | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝑌  ∈  𝑋  ∧  𝐴  ∈  𝑋 ) )  →  𝐴  ∈  𝑋 ) | 
						
							| 3 |  | simprl | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝑌  ∈  𝑋  ∧  𝐴  ∈  𝑋 ) )  →  𝑌  ∈  𝑋 ) | 
						
							| 4 | 1 | grpocl | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋  ∧  𝑌  ∈  𝑋 )  →  ( 𝐴 𝐺 𝑌 )  ∈  𝑋 ) | 
						
							| 5 | 4 | 3com23 | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝑌  ∈  𝑋  ∧  𝐴  ∈  𝑋 )  →  ( 𝐴 𝐺 𝑌 )  ∈  𝑋 ) | 
						
							| 6 | 5 | 3expb | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝑌  ∈  𝑋  ∧  𝐴  ∈  𝑋 ) )  →  ( 𝐴 𝐺 𝑌 )  ∈  𝑋 ) | 
						
							| 7 | 2 3 6 | 3jca | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝑌  ∈  𝑋  ∧  𝐴  ∈  𝑋 ) )  →  ( 𝐴  ∈  𝑋  ∧  𝑌  ∈  𝑋  ∧  ( 𝐴 𝐺 𝑌 )  ∈  𝑋 ) ) | 
						
							| 8 | 1 | grpoass | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝑌  ∈  𝑋  ∧  ( 𝐴 𝐺 𝑌 )  ∈  𝑋 ) )  →  ( ( 𝐴 𝐺 𝑌 ) 𝐺 ( 𝐴 𝐺 𝑌 ) )  =  ( 𝐴 𝐺 ( 𝑌 𝐺 ( 𝐴 𝐺 𝑌 ) ) ) ) | 
						
							| 9 | 7 8 | syldan | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝑌  ∈  𝑋  ∧  𝐴  ∈  𝑋 ) )  →  ( ( 𝐴 𝐺 𝑌 ) 𝐺 ( 𝐴 𝐺 𝑌 ) )  =  ( 𝐴 𝐺 ( 𝑌 𝐺 ( 𝐴 𝐺 𝑌 ) ) ) ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  ( 𝑌  ∈  𝑋  ∧  𝐴  ∈  𝑋 ) )  ∧  ( ( 𝑈 𝐺 𝑌 )  =  𝑌  ∧  ( 𝑌 𝐺 𝐴 )  =  𝑈 ) )  →  ( ( 𝐴 𝐺 𝑌 ) 𝐺 ( 𝐴 𝐺 𝑌 ) )  =  ( 𝐴 𝐺 ( 𝑌 𝐺 ( 𝐴 𝐺 𝑌 ) ) ) ) | 
						
							| 11 |  | oveq1 | ⊢ ( ( 𝑌 𝐺 𝐴 )  =  𝑈  →  ( ( 𝑌 𝐺 𝐴 ) 𝐺 𝑌 )  =  ( 𝑈 𝐺 𝑌 ) ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( ( 𝑈 𝐺 𝑌 )  =  𝑌  ∧  ( 𝑌 𝐺 𝐴 )  =  𝑈 )  →  ( ( 𝑌 𝐺 𝐴 ) 𝐺 𝑌 )  =  ( 𝑈 𝐺 𝑌 ) ) | 
						
							| 13 |  | simpl | ⊢ ( ( ( 𝑈 𝐺 𝑌 )  =  𝑌  ∧  ( 𝑌 𝐺 𝐴 )  =  𝑈 )  →  ( 𝑈 𝐺 𝑌 )  =  𝑌 ) | 
						
							| 14 | 12 13 | eqtr2d | ⊢ ( ( ( 𝑈 𝐺 𝑌 )  =  𝑌  ∧  ( 𝑌 𝐺 𝐴 )  =  𝑈 )  →  𝑌  =  ( ( 𝑌 𝐺 𝐴 ) 𝐺 𝑌 ) ) | 
						
							| 15 |  | id | ⊢ ( ( 𝑌  ∈  𝑋  ∧  𝐴  ∈  𝑋  ∧  𝑌  ∈  𝑋 )  →  ( 𝑌  ∈  𝑋  ∧  𝐴  ∈  𝑋  ∧  𝑌  ∈  𝑋 ) ) | 
						
							| 16 | 15 | 3anidm13 | ⊢ ( ( 𝑌  ∈  𝑋  ∧  𝐴  ∈  𝑋 )  →  ( 𝑌  ∈  𝑋  ∧  𝐴  ∈  𝑋  ∧  𝑌  ∈  𝑋 ) ) | 
						
							| 17 | 1 | grpoass | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝑌  ∈  𝑋  ∧  𝐴  ∈  𝑋  ∧  𝑌  ∈  𝑋 ) )  →  ( ( 𝑌 𝐺 𝐴 ) 𝐺 𝑌 )  =  ( 𝑌 𝐺 ( 𝐴 𝐺 𝑌 ) ) ) | 
						
							| 18 | 16 17 | sylan2 | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝑌  ∈  𝑋  ∧  𝐴  ∈  𝑋 ) )  →  ( ( 𝑌 𝐺 𝐴 ) 𝐺 𝑌 )  =  ( 𝑌 𝐺 ( 𝐴 𝐺 𝑌 ) ) ) | 
						
							| 19 | 14 18 | sylan9eqr | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  ( 𝑌  ∈  𝑋  ∧  𝐴  ∈  𝑋 ) )  ∧  ( ( 𝑈 𝐺 𝑌 )  =  𝑌  ∧  ( 𝑌 𝐺 𝐴 )  =  𝑈 ) )  →  𝑌  =  ( 𝑌 𝐺 ( 𝐴 𝐺 𝑌 ) ) ) | 
						
							| 20 | 19 | eqcomd | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  ( 𝑌  ∈  𝑋  ∧  𝐴  ∈  𝑋 ) )  ∧  ( ( 𝑈 𝐺 𝑌 )  =  𝑌  ∧  ( 𝑌 𝐺 𝐴 )  =  𝑈 ) )  →  ( 𝑌 𝐺 ( 𝐴 𝐺 𝑌 ) )  =  𝑌 ) | 
						
							| 21 | 20 | oveq2d | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  ( 𝑌  ∈  𝑋  ∧  𝐴  ∈  𝑋 ) )  ∧  ( ( 𝑈 𝐺 𝑌 )  =  𝑌  ∧  ( 𝑌 𝐺 𝐴 )  =  𝑈 ) )  →  ( 𝐴 𝐺 ( 𝑌 𝐺 ( 𝐴 𝐺 𝑌 ) ) )  =  ( 𝐴 𝐺 𝑌 ) ) | 
						
							| 22 | 10 21 | eqtrd | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  ( 𝑌  ∈  𝑋  ∧  𝐴  ∈  𝑋 ) )  ∧  ( ( 𝑈 𝐺 𝑌 )  =  𝑌  ∧  ( 𝑌 𝐺 𝐴 )  =  𝑈 ) )  →  ( ( 𝐴 𝐺 𝑌 ) 𝐺 ( 𝐴 𝐺 𝑌 ) )  =  ( 𝐴 𝐺 𝑌 ) ) |