| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hhcms.1 |
⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 |
| 2 |
|
hhcms.2 |
⊢ 𝐷 = ( IndMet ‘ 𝑈 ) |
| 3 |
|
eqid |
⊢ ( MetOpen ‘ 𝐷 ) = ( MetOpen ‘ 𝐷 ) |
| 4 |
1 2
|
hhmet |
⊢ 𝐷 ∈ ( Met ‘ ℋ ) |
| 5 |
1 2
|
hhcau |
⊢ Cauchy = ( ( Cau ‘ 𝐷 ) ∩ ( ℋ ↑m ℕ ) ) |
| 6 |
5
|
eleq2i |
⊢ ( 𝑓 ∈ Cauchy ↔ 𝑓 ∈ ( ( Cau ‘ 𝐷 ) ∩ ( ℋ ↑m ℕ ) ) ) |
| 7 |
|
elin |
⊢ ( 𝑓 ∈ ( ( Cau ‘ 𝐷 ) ∩ ( ℋ ↑m ℕ ) ) ↔ ( 𝑓 ∈ ( Cau ‘ 𝐷 ) ∧ 𝑓 ∈ ( ℋ ↑m ℕ ) ) ) |
| 8 |
|
ax-hilex |
⊢ ℋ ∈ V |
| 9 |
|
nnex |
⊢ ℕ ∈ V |
| 10 |
8 9
|
elmap |
⊢ ( 𝑓 ∈ ( ℋ ↑m ℕ ) ↔ 𝑓 : ℕ ⟶ ℋ ) |
| 11 |
10
|
anbi2i |
⊢ ( ( 𝑓 ∈ ( Cau ‘ 𝐷 ) ∧ 𝑓 ∈ ( ℋ ↑m ℕ ) ) ↔ ( 𝑓 ∈ ( Cau ‘ 𝐷 ) ∧ 𝑓 : ℕ ⟶ ℋ ) ) |
| 12 |
7 11
|
bitri |
⊢ ( 𝑓 ∈ ( ( Cau ‘ 𝐷 ) ∩ ( ℋ ↑m ℕ ) ) ↔ ( 𝑓 ∈ ( Cau ‘ 𝐷 ) ∧ 𝑓 : ℕ ⟶ ℋ ) ) |
| 13 |
6 12
|
bitri |
⊢ ( 𝑓 ∈ Cauchy ↔ ( 𝑓 ∈ ( Cau ‘ 𝐷 ) ∧ 𝑓 : ℕ ⟶ ℋ ) ) |
| 14 |
|
ax-hcompl |
⊢ ( 𝑓 ∈ Cauchy → ∃ 𝑥 ∈ ℋ 𝑓 ⇝𝑣 𝑥 ) |
| 15 |
13 14
|
sylbir |
⊢ ( ( 𝑓 ∈ ( Cau ‘ 𝐷 ) ∧ 𝑓 : ℕ ⟶ ℋ ) → ∃ 𝑥 ∈ ℋ 𝑓 ⇝𝑣 𝑥 ) |
| 16 |
1 2 3
|
hhlm |
⊢ ⇝𝑣 = ( ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ↾ ( ℋ ↑m ℕ ) ) |
| 17 |
16
|
breqi |
⊢ ( 𝑓 ⇝𝑣 𝑥 ↔ 𝑓 ( ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ↾ ( ℋ ↑m ℕ ) ) 𝑥 ) |
| 18 |
|
vex |
⊢ 𝑥 ∈ V |
| 19 |
18
|
brresi |
⊢ ( 𝑓 ( ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ↾ ( ℋ ↑m ℕ ) ) 𝑥 ↔ ( 𝑓 ∈ ( ℋ ↑m ℕ ) ∧ 𝑓 ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) 𝑥 ) ) |
| 20 |
17 19
|
bitri |
⊢ ( 𝑓 ⇝𝑣 𝑥 ↔ ( 𝑓 ∈ ( ℋ ↑m ℕ ) ∧ 𝑓 ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) 𝑥 ) ) |
| 21 |
|
vex |
⊢ 𝑓 ∈ V |
| 22 |
21 18
|
breldm |
⊢ ( 𝑓 ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) 𝑥 → 𝑓 ∈ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) |
| 23 |
20 22
|
simplbiim |
⊢ ( 𝑓 ⇝𝑣 𝑥 → 𝑓 ∈ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) |
| 24 |
23
|
rexlimivw |
⊢ ( ∃ 𝑥 ∈ ℋ 𝑓 ⇝𝑣 𝑥 → 𝑓 ∈ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) |
| 25 |
15 24
|
syl |
⊢ ( ( 𝑓 ∈ ( Cau ‘ 𝐷 ) ∧ 𝑓 : ℕ ⟶ ℋ ) → 𝑓 ∈ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) |
| 26 |
3 4 25
|
iscmet3i |
⊢ 𝐷 ∈ ( CMet ‘ ℋ ) |