Metamath Proof Explorer


Theorem hhcms

Description: The Hilbert space induced metric determines a complete metric space. (Contributed by NM, 10-Apr-2008) (Proof shortened by Mario Carneiro, 14-May-2014) (Proof shortened by Peter Mazsa, 2-Oct-2022) (New usage is discouraged.)

Ref Expression
Hypotheses hhcms.1 U = + norm
hhcms.2 D = IndMet U
Assertion hhcms D CMet

Proof

Step Hyp Ref Expression
1 hhcms.1 U = + norm
2 hhcms.2 D = IndMet U
3 eqid MetOpen D = MetOpen D
4 1 2 hhmet D Met
5 1 2 hhcau Cauchy = Cau D
6 5 eleq2i f Cauchy f Cau D
7 elin f Cau D f Cau D f
8 ax-hilex V
9 nnex V
10 8 9 elmap f f :
11 10 anbi2i f Cau D f f Cau D f :
12 7 11 bitri f Cau D f Cau D f :
13 6 12 bitri f Cauchy f Cau D f :
14 ax-hcompl f Cauchy x f v x
15 13 14 sylbir f Cau D f : x f v x
16 1 2 3 hhlm v = t MetOpen D
17 16 breqi f v x f t MetOpen D x
18 vex x V
19 18 brresi f t MetOpen D x f f t MetOpen D x
20 17 19 bitri f v x f f t MetOpen D x
21 vex f V
22 21 18 breldm f t MetOpen D x f dom t MetOpen D
23 20 22 simplbiim f v x f dom t MetOpen D
24 23 rexlimivw x f v x f dom t MetOpen D
25 15 24 syl f Cau D f : f dom t MetOpen D
26 3 4 25 iscmet3i D CMet