Metamath Proof Explorer


Theorem hhcms

Description: The Hilbert space induced metric determines a complete metric space. (Contributed by NM, 10-Apr-2008) (Proof shortened by Mario Carneiro, 14-May-2014) (Proof shortened by Peter Mazsa, 2-Oct-2022) (New usage is discouraged.)

Ref Expression
Hypotheses hhcms.1 U=+norm
hhcms.2 D=IndMetU
Assertion hhcms DCMet

Proof

Step Hyp Ref Expression
1 hhcms.1 U=+norm
2 hhcms.2 D=IndMetU
3 eqid MetOpenD=MetOpenD
4 1 2 hhmet DMet
5 1 2 hhcau Cauchy=CauD
6 5 eleq2i fCauchyfCauD
7 elin fCauDfCauDf
8 ax-hilex V
9 nnex V
10 8 9 elmap ff:
11 10 anbi2i fCauDffCauDf:
12 7 11 bitri fCauDfCauDf:
13 6 12 bitri fCauchyfCauDf:
14 ax-hcompl fCauchyxfvx
15 13 14 sylbir fCauDf:xfvx
16 1 2 3 hhlm v=tMetOpenD
17 16 breqi fvxftMetOpenDx
18 vex xV
19 18 brresi ftMetOpenDxfftMetOpenDx
20 17 19 bitri fvxfftMetOpenDx
21 vex fV
22 21 18 breldm ftMetOpenDxfdomtMetOpenD
23 20 22 simplbiim fvxfdomtMetOpenD
24 23 rexlimivw xfvxfdomtMetOpenD
25 15 24 syl fCauDf:fdomtMetOpenD
26 3 4 25 iscmet3i DCMet