| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elicores | ⊢ ( 𝑥  ∈  ran  ( [,)  ↾  ( ℝ  ×  ℝ ) )  ↔  ∃ 𝑦  ∈  ℝ ∃ 𝑧  ∈  ℝ 𝑥  =  ( 𝑦 [,) 𝑧 ) ) | 
						
							| 2 | 1 | biimpi | ⊢ ( 𝑥  ∈  ran  ( [,)  ↾  ( ℝ  ×  ℝ ) )  →  ∃ 𝑦  ∈  ℝ ∃ 𝑧  ∈  ℝ 𝑥  =  ( 𝑦 [,) 𝑧 ) ) | 
						
							| 3 |  | simpr | ⊢ ( ( ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ )  ∧  𝑥  =  ( 𝑦 [,) 𝑧 ) )  →  𝑥  =  ( 𝑦 [,) 𝑧 ) ) | 
						
							| 4 |  | simpl | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ )  →  𝑦  ∈  ℝ ) | 
						
							| 5 |  | rexr | ⊢ ( 𝑧  ∈  ℝ  →  𝑧  ∈  ℝ* ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ )  →  𝑧  ∈  ℝ* ) | 
						
							| 7 |  | icombl | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ* )  →  ( 𝑦 [,) 𝑧 )  ∈  dom  vol ) | 
						
							| 8 | 4 6 7 | syl2anc | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ )  →  ( 𝑦 [,) 𝑧 )  ∈  dom  vol ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ )  ∧  𝑥  =  ( 𝑦 [,) 𝑧 ) )  →  ( 𝑦 [,) 𝑧 )  ∈  dom  vol ) | 
						
							| 10 | 3 9 | eqeltrd | ⊢ ( ( ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ )  ∧  𝑥  =  ( 𝑦 [,) 𝑧 ) )  →  𝑥  ∈  dom  vol ) | 
						
							| 11 | 10 | rexlimdva2 | ⊢ ( 𝑦  ∈  ℝ  →  ( ∃ 𝑧  ∈  ℝ 𝑥  =  ( 𝑦 [,) 𝑧 )  →  𝑥  ∈  dom  vol ) ) | 
						
							| 12 | 11 | rexlimiv | ⊢ ( ∃ 𝑦  ∈  ℝ ∃ 𝑧  ∈  ℝ 𝑥  =  ( 𝑦 [,) 𝑧 )  →  𝑥  ∈  dom  vol ) | 
						
							| 13 | 12 | a1i | ⊢ ( 𝑥  ∈  ran  ( [,)  ↾  ( ℝ  ×  ℝ ) )  →  ( ∃ 𝑦  ∈  ℝ ∃ 𝑧  ∈  ℝ 𝑥  =  ( 𝑦 [,) 𝑧 )  →  𝑥  ∈  dom  vol ) ) | 
						
							| 14 | 2 13 | mpd | ⊢ ( 𝑥  ∈  ran  ( [,)  ↾  ( ℝ  ×  ℝ ) )  →  𝑥  ∈  dom  vol ) | 
						
							| 15 | 14 | rgen | ⊢ ∀ 𝑥  ∈  ran  ( [,)  ↾  ( ℝ  ×  ℝ ) ) 𝑥  ∈  dom  vol | 
						
							| 16 |  | dfss3 | ⊢ ( ran  ( [,)  ↾  ( ℝ  ×  ℝ ) )  ⊆  dom  vol  ↔  ∀ 𝑥  ∈  ran  ( [,)  ↾  ( ℝ  ×  ℝ ) ) 𝑥  ∈  dom  vol ) | 
						
							| 17 | 15 16 | mpbir | ⊢ ran  ( [,)  ↾  ( ℝ  ×  ℝ ) )  ⊆  dom  vol |