Metamath Proof Explorer


Theorem icoresmbl

Description: A closed-below, open-above real interval is measurable, when the bounds are real. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Assertion icoresmbl ran ( [,) ↾ ( ℝ × ℝ ) ) ⊆ dom vol

Proof

Step Hyp Ref Expression
1 elicores ( 𝑥 ∈ ran ( [,) ↾ ( ℝ × ℝ ) ) ↔ ∃ 𝑦 ∈ ℝ ∃ 𝑧 ∈ ℝ 𝑥 = ( 𝑦 [,) 𝑧 ) )
2 1 biimpi ( 𝑥 ∈ ran ( [,) ↾ ( ℝ × ℝ ) ) → ∃ 𝑦 ∈ ℝ ∃ 𝑧 ∈ ℝ 𝑥 = ( 𝑦 [,) 𝑧 ) )
3 simpr ( ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ∧ 𝑥 = ( 𝑦 [,) 𝑧 ) ) → 𝑥 = ( 𝑦 [,) 𝑧 ) )
4 simpl ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → 𝑦 ∈ ℝ )
5 rexr ( 𝑧 ∈ ℝ → 𝑧 ∈ ℝ* )
6 5 adantl ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → 𝑧 ∈ ℝ* )
7 icombl ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ* ) → ( 𝑦 [,) 𝑧 ) ∈ dom vol )
8 4 6 7 syl2anc ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( 𝑦 [,) 𝑧 ) ∈ dom vol )
9 8 adantr ( ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ∧ 𝑥 = ( 𝑦 [,) 𝑧 ) ) → ( 𝑦 [,) 𝑧 ) ∈ dom vol )
10 3 9 eqeltrd ( ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ∧ 𝑥 = ( 𝑦 [,) 𝑧 ) ) → 𝑥 ∈ dom vol )
11 10 rexlimdva2 ( 𝑦 ∈ ℝ → ( ∃ 𝑧 ∈ ℝ 𝑥 = ( 𝑦 [,) 𝑧 ) → 𝑥 ∈ dom vol ) )
12 11 rexlimiv ( ∃ 𝑦 ∈ ℝ ∃ 𝑧 ∈ ℝ 𝑥 = ( 𝑦 [,) 𝑧 ) → 𝑥 ∈ dom vol )
13 12 a1i ( 𝑥 ∈ ran ( [,) ↾ ( ℝ × ℝ ) ) → ( ∃ 𝑦 ∈ ℝ ∃ 𝑧 ∈ ℝ 𝑥 = ( 𝑦 [,) 𝑧 ) → 𝑥 ∈ dom vol ) )
14 2 13 mpd ( 𝑥 ∈ ran ( [,) ↾ ( ℝ × ℝ ) ) → 𝑥 ∈ dom vol )
15 14 rgen 𝑥 ∈ ran ( [,) ↾ ( ℝ × ℝ ) ) 𝑥 ∈ dom vol
16 dfss3 ( ran ( [,) ↾ ( ℝ × ℝ ) ) ⊆ dom vol ↔ ∀ 𝑥 ∈ ran ( [,) ↾ ( ℝ × ℝ ) ) 𝑥 ∈ dom vol )
17 15 16 mpbir ran ( [,) ↾ ( ℝ × ℝ ) ) ⊆ dom vol