Step |
Hyp |
Ref |
Expression |
1 |
|
elicores |
⊢ ( 𝑥 ∈ ran ( [,) ↾ ( ℝ × ℝ ) ) ↔ ∃ 𝑦 ∈ ℝ ∃ 𝑧 ∈ ℝ 𝑥 = ( 𝑦 [,) 𝑧 ) ) |
2 |
1
|
biimpi |
⊢ ( 𝑥 ∈ ran ( [,) ↾ ( ℝ × ℝ ) ) → ∃ 𝑦 ∈ ℝ ∃ 𝑧 ∈ ℝ 𝑥 = ( 𝑦 [,) 𝑧 ) ) |
3 |
|
simpr |
⊢ ( ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ∧ 𝑥 = ( 𝑦 [,) 𝑧 ) ) → 𝑥 = ( 𝑦 [,) 𝑧 ) ) |
4 |
|
simpl |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → 𝑦 ∈ ℝ ) |
5 |
|
rexr |
⊢ ( 𝑧 ∈ ℝ → 𝑧 ∈ ℝ* ) |
6 |
5
|
adantl |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → 𝑧 ∈ ℝ* ) |
7 |
|
icombl |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ* ) → ( 𝑦 [,) 𝑧 ) ∈ dom vol ) |
8 |
4 6 7
|
syl2anc |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( 𝑦 [,) 𝑧 ) ∈ dom vol ) |
9 |
8
|
adantr |
⊢ ( ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ∧ 𝑥 = ( 𝑦 [,) 𝑧 ) ) → ( 𝑦 [,) 𝑧 ) ∈ dom vol ) |
10 |
3 9
|
eqeltrd |
⊢ ( ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ∧ 𝑥 = ( 𝑦 [,) 𝑧 ) ) → 𝑥 ∈ dom vol ) |
11 |
10
|
rexlimdva2 |
⊢ ( 𝑦 ∈ ℝ → ( ∃ 𝑧 ∈ ℝ 𝑥 = ( 𝑦 [,) 𝑧 ) → 𝑥 ∈ dom vol ) ) |
12 |
11
|
rexlimiv |
⊢ ( ∃ 𝑦 ∈ ℝ ∃ 𝑧 ∈ ℝ 𝑥 = ( 𝑦 [,) 𝑧 ) → 𝑥 ∈ dom vol ) |
13 |
12
|
a1i |
⊢ ( 𝑥 ∈ ran ( [,) ↾ ( ℝ × ℝ ) ) → ( ∃ 𝑦 ∈ ℝ ∃ 𝑧 ∈ ℝ 𝑥 = ( 𝑦 [,) 𝑧 ) → 𝑥 ∈ dom vol ) ) |
14 |
2 13
|
mpd |
⊢ ( 𝑥 ∈ ran ( [,) ↾ ( ℝ × ℝ ) ) → 𝑥 ∈ dom vol ) |
15 |
14
|
rgen |
⊢ ∀ 𝑥 ∈ ran ( [,) ↾ ( ℝ × ℝ ) ) 𝑥 ∈ dom vol |
16 |
|
dfss3 |
⊢ ( ran ( [,) ↾ ( ℝ × ℝ ) ) ⊆ dom vol ↔ ∀ 𝑥 ∈ ran ( [,) ↾ ( ℝ × ℝ ) ) 𝑥 ∈ dom vol ) |
17 |
15 16
|
mpbir |
⊢ ran ( [,) ↾ ( ℝ × ℝ ) ) ⊆ dom vol |