Metamath Proof Explorer


Theorem icoresmbl

Description: A closed-below, open-above real interval is measurable, when the bounds are real. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Assertion icoresmbl ran . 2 dom vol

Proof

Step Hyp Ref Expression
1 elicores x ran . 2 y z x = y z
2 1 biimpi x ran . 2 y z x = y z
3 simpr y z x = y z x = y z
4 simpl y z y
5 rexr z z *
6 5 adantl y z z *
7 icombl y z * y z dom vol
8 4 6 7 syl2anc y z y z dom vol
9 8 adantr y z x = y z y z dom vol
10 3 9 eqeltrd y z x = y z x dom vol
11 10 rexlimdva2 y z x = y z x dom vol
12 11 rexlimiv y z x = y z x dom vol
13 12 a1i x ran . 2 y z x = y z x dom vol
14 2 13 mpd x ran . 2 x dom vol
15 14 rgen x ran . 2 x dom vol
16 dfss3 ran . 2 dom vol x ran . 2 x dom vol
17 15 16 mpbir ran . 2 dom vol