| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elicores |  |-  ( x e. ran ( [,) |` ( RR X. RR ) ) <-> E. y e. RR E. z e. RR x = ( y [,) z ) ) | 
						
							| 2 | 1 | biimpi |  |-  ( x e. ran ( [,) |` ( RR X. RR ) ) -> E. y e. RR E. z e. RR x = ( y [,) z ) ) | 
						
							| 3 |  | simpr |  |-  ( ( ( y e. RR /\ z e. RR ) /\ x = ( y [,) z ) ) -> x = ( y [,) z ) ) | 
						
							| 4 |  | simpl |  |-  ( ( y e. RR /\ z e. RR ) -> y e. RR ) | 
						
							| 5 |  | rexr |  |-  ( z e. RR -> z e. RR* ) | 
						
							| 6 | 5 | adantl |  |-  ( ( y e. RR /\ z e. RR ) -> z e. RR* ) | 
						
							| 7 |  | icombl |  |-  ( ( y e. RR /\ z e. RR* ) -> ( y [,) z ) e. dom vol ) | 
						
							| 8 | 4 6 7 | syl2anc |  |-  ( ( y e. RR /\ z e. RR ) -> ( y [,) z ) e. dom vol ) | 
						
							| 9 | 8 | adantr |  |-  ( ( ( y e. RR /\ z e. RR ) /\ x = ( y [,) z ) ) -> ( y [,) z ) e. dom vol ) | 
						
							| 10 | 3 9 | eqeltrd |  |-  ( ( ( y e. RR /\ z e. RR ) /\ x = ( y [,) z ) ) -> x e. dom vol ) | 
						
							| 11 | 10 | rexlimdva2 |  |-  ( y e. RR -> ( E. z e. RR x = ( y [,) z ) -> x e. dom vol ) ) | 
						
							| 12 | 11 | rexlimiv |  |-  ( E. y e. RR E. z e. RR x = ( y [,) z ) -> x e. dom vol ) | 
						
							| 13 | 12 | a1i |  |-  ( x e. ran ( [,) |` ( RR X. RR ) ) -> ( E. y e. RR E. z e. RR x = ( y [,) z ) -> x e. dom vol ) ) | 
						
							| 14 | 2 13 | mpd |  |-  ( x e. ran ( [,) |` ( RR X. RR ) ) -> x e. dom vol ) | 
						
							| 15 | 14 | rgen |  |-  A. x e. ran ( [,) |` ( RR X. RR ) ) x e. dom vol | 
						
							| 16 |  | dfss3 |  |-  ( ran ( [,) |` ( RR X. RR ) ) C_ dom vol <-> A. x e. ran ( [,) |` ( RR X. RR ) ) x e. dom vol ) | 
						
							| 17 | 15 16 | mpbir |  |-  ran ( [,) |` ( RR X. RR ) ) C_ dom vol |