Metamath Proof Explorer


Theorem icoresmbl

Description: A closed-below, open-above real interval is measurable, when the bounds are real. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Assertion icoresmbl
|- ran ( [,) |` ( RR X. RR ) ) C_ dom vol

Proof

Step Hyp Ref Expression
1 elicores
 |-  ( x e. ran ( [,) |` ( RR X. RR ) ) <-> E. y e. RR E. z e. RR x = ( y [,) z ) )
2 1 biimpi
 |-  ( x e. ran ( [,) |` ( RR X. RR ) ) -> E. y e. RR E. z e. RR x = ( y [,) z ) )
3 simpr
 |-  ( ( ( y e. RR /\ z e. RR ) /\ x = ( y [,) z ) ) -> x = ( y [,) z ) )
4 simpl
 |-  ( ( y e. RR /\ z e. RR ) -> y e. RR )
5 rexr
 |-  ( z e. RR -> z e. RR* )
6 5 adantl
 |-  ( ( y e. RR /\ z e. RR ) -> z e. RR* )
7 icombl
 |-  ( ( y e. RR /\ z e. RR* ) -> ( y [,) z ) e. dom vol )
8 4 6 7 syl2anc
 |-  ( ( y e. RR /\ z e. RR ) -> ( y [,) z ) e. dom vol )
9 8 adantr
 |-  ( ( ( y e. RR /\ z e. RR ) /\ x = ( y [,) z ) ) -> ( y [,) z ) e. dom vol )
10 3 9 eqeltrd
 |-  ( ( ( y e. RR /\ z e. RR ) /\ x = ( y [,) z ) ) -> x e. dom vol )
11 10 rexlimdva2
 |-  ( y e. RR -> ( E. z e. RR x = ( y [,) z ) -> x e. dom vol ) )
12 11 rexlimiv
 |-  ( E. y e. RR E. z e. RR x = ( y [,) z ) -> x e. dom vol )
13 12 a1i
 |-  ( x e. ran ( [,) |` ( RR X. RR ) ) -> ( E. y e. RR E. z e. RR x = ( y [,) z ) -> x e. dom vol ) )
14 2 13 mpd
 |-  ( x e. ran ( [,) |` ( RR X. RR ) ) -> x e. dom vol )
15 14 rgen
 |-  A. x e. ran ( [,) |` ( RR X. RR ) ) x e. dom vol
16 dfss3
 |-  ( ran ( [,) |` ( RR X. RR ) ) C_ dom vol <-> A. x e. ran ( [,) |` ( RR X. RR ) ) x e. dom vol )
17 15 16 mpbir
 |-  ran ( [,) |` ( RR X. RR ) ) C_ dom vol