Step |
Hyp |
Ref |
Expression |
1 |
|
elicores |
|- ( x e. ran ( [,) |` ( RR X. RR ) ) <-> E. y e. RR E. z e. RR x = ( y [,) z ) ) |
2 |
1
|
biimpi |
|- ( x e. ran ( [,) |` ( RR X. RR ) ) -> E. y e. RR E. z e. RR x = ( y [,) z ) ) |
3 |
|
simpr |
|- ( ( ( y e. RR /\ z e. RR ) /\ x = ( y [,) z ) ) -> x = ( y [,) z ) ) |
4 |
|
simpl |
|- ( ( y e. RR /\ z e. RR ) -> y e. RR ) |
5 |
|
rexr |
|- ( z e. RR -> z e. RR* ) |
6 |
5
|
adantl |
|- ( ( y e. RR /\ z e. RR ) -> z e. RR* ) |
7 |
|
icombl |
|- ( ( y e. RR /\ z e. RR* ) -> ( y [,) z ) e. dom vol ) |
8 |
4 6 7
|
syl2anc |
|- ( ( y e. RR /\ z e. RR ) -> ( y [,) z ) e. dom vol ) |
9 |
8
|
adantr |
|- ( ( ( y e. RR /\ z e. RR ) /\ x = ( y [,) z ) ) -> ( y [,) z ) e. dom vol ) |
10 |
3 9
|
eqeltrd |
|- ( ( ( y e. RR /\ z e. RR ) /\ x = ( y [,) z ) ) -> x e. dom vol ) |
11 |
10
|
rexlimdva2 |
|- ( y e. RR -> ( E. z e. RR x = ( y [,) z ) -> x e. dom vol ) ) |
12 |
11
|
rexlimiv |
|- ( E. y e. RR E. z e. RR x = ( y [,) z ) -> x e. dom vol ) |
13 |
12
|
a1i |
|- ( x e. ran ( [,) |` ( RR X. RR ) ) -> ( E. y e. RR E. z e. RR x = ( y [,) z ) -> x e. dom vol ) ) |
14 |
2 13
|
mpd |
|- ( x e. ran ( [,) |` ( RR X. RR ) ) -> x e. dom vol ) |
15 |
14
|
rgen |
|- A. x e. ran ( [,) |` ( RR X. RR ) ) x e. dom vol |
16 |
|
dfss3 |
|- ( ran ( [,) |` ( RR X. RR ) ) C_ dom vol <-> A. x e. ran ( [,) |` ( RR X. RR ) ) x e. dom vol ) |
17 |
15 16
|
mpbir |
|- ran ( [,) |` ( RR X. RR ) ) C_ dom vol |