Step |
Hyp |
Ref |
Expression |
1 |
|
ssid |
⊢ 𝑦 ⊆ 𝑦 |
2 |
|
sseq2 |
⊢ ( 𝑧 = 𝑦 → ( 𝑦 ⊆ 𝑧 ↔ 𝑦 ⊆ 𝑦 ) ) |
3 |
2
|
rspcev |
⊢ ( ( 𝑦 ∈ 𝑥 ∧ 𝑦 ⊆ 𝑦 ) → ∃ 𝑧 ∈ 𝑥 𝑦 ⊆ 𝑧 ) |
4 |
1 3
|
mpan2 |
⊢ ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ∈ 𝑥 𝑦 ⊆ 𝑧 ) |
5 |
|
vex |
⊢ 𝑦 ∈ V |
6 |
5
|
elima |
⊢ ( 𝑦 ∈ ( ◡ SSet “ 𝑥 ) ↔ ∃ 𝑧 ∈ 𝑥 𝑧 ◡ SSet 𝑦 ) |
7 |
|
vex |
⊢ 𝑧 ∈ V |
8 |
7 5
|
brcnv |
⊢ ( 𝑧 ◡ SSet 𝑦 ↔ 𝑦 SSet 𝑧 ) |
9 |
7
|
brsset |
⊢ ( 𝑦 SSet 𝑧 ↔ 𝑦 ⊆ 𝑧 ) |
10 |
8 9
|
bitri |
⊢ ( 𝑧 ◡ SSet 𝑦 ↔ 𝑦 ⊆ 𝑧 ) |
11 |
10
|
rexbii |
⊢ ( ∃ 𝑧 ∈ 𝑥 𝑧 ◡ SSet 𝑦 ↔ ∃ 𝑧 ∈ 𝑥 𝑦 ⊆ 𝑧 ) |
12 |
6 11
|
bitri |
⊢ ( 𝑦 ∈ ( ◡ SSet “ 𝑥 ) ↔ ∃ 𝑧 ∈ 𝑥 𝑦 ⊆ 𝑧 ) |
13 |
4 12
|
sylibr |
⊢ ( 𝑦 ∈ 𝑥 → 𝑦 ∈ ( ◡ SSet “ 𝑥 ) ) |
14 |
13
|
ssriv |
⊢ 𝑥 ⊆ ( ◡ SSet “ 𝑥 ) |
15 |
|
sseq2 |
⊢ ( 𝑦 = ( ◡ SSet “ 𝑥 ) → ( 𝑥 ⊆ 𝑦 ↔ 𝑥 ⊆ ( ◡ SSet “ 𝑥 ) ) ) |
16 |
14 15
|
mpbiri |
⊢ ( 𝑦 = ( ◡ SSet “ 𝑥 ) → 𝑥 ⊆ 𝑦 ) |
17 |
|
vex |
⊢ 𝑥 ∈ V |
18 |
17 5
|
brimage |
⊢ ( 𝑥 Image ◡ SSet 𝑦 ↔ 𝑦 = ( ◡ SSet “ 𝑥 ) ) |
19 |
|
df-br |
⊢ ( 𝑥 Image ◡ SSet 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ Image ◡ SSet ) |
20 |
18 19
|
bitr3i |
⊢ ( 𝑦 = ( ◡ SSet “ 𝑥 ) ↔ 〈 𝑥 , 𝑦 〉 ∈ Image ◡ SSet ) |
21 |
5
|
brsset |
⊢ ( 𝑥 SSet 𝑦 ↔ 𝑥 ⊆ 𝑦 ) |
22 |
|
df-br |
⊢ ( 𝑥 SSet 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ SSet ) |
23 |
21 22
|
bitr3i |
⊢ ( 𝑥 ⊆ 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ SSet ) |
24 |
16 20 23
|
3imtr3i |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ Image ◡ SSet → 〈 𝑥 , 𝑦 〉 ∈ SSet ) |
25 |
24
|
gen2 |
⊢ ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ Image ◡ SSet → 〈 𝑥 , 𝑦 〉 ∈ SSet ) |
26 |
|
funimage |
⊢ Fun Image ◡ SSet |
27 |
|
funrel |
⊢ ( Fun Image ◡ SSet → Rel Image ◡ SSet ) |
28 |
|
ssrel |
⊢ ( Rel Image ◡ SSet → ( Image ◡ SSet ⊆ SSet ↔ ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ Image ◡ SSet → 〈 𝑥 , 𝑦 〉 ∈ SSet ) ) ) |
29 |
26 27 28
|
mp2b |
⊢ ( Image ◡ SSet ⊆ SSet ↔ ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ Image ◡ SSet → 〈 𝑥 , 𝑦 〉 ∈ SSet ) ) |
30 |
25 29
|
mpbir |
⊢ Image ◡ SSet ⊆ SSet |