| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssid | ⊢ 𝑦  ⊆  𝑦 | 
						
							| 2 |  | sseq2 | ⊢ ( 𝑧  =  𝑦  →  ( 𝑦  ⊆  𝑧  ↔  𝑦  ⊆  𝑦 ) ) | 
						
							| 3 | 2 | rspcev | ⊢ ( ( 𝑦  ∈  𝑥  ∧  𝑦  ⊆  𝑦 )  →  ∃ 𝑧  ∈  𝑥 𝑦  ⊆  𝑧 ) | 
						
							| 4 | 1 3 | mpan2 | ⊢ ( 𝑦  ∈  𝑥  →  ∃ 𝑧  ∈  𝑥 𝑦  ⊆  𝑧 ) | 
						
							| 5 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 6 | 5 | elima | ⊢ ( 𝑦  ∈  ( ◡  SSet   “  𝑥 )  ↔  ∃ 𝑧  ∈  𝑥 𝑧 ◡  SSet  𝑦 ) | 
						
							| 7 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 8 | 7 5 | brcnv | ⊢ ( 𝑧 ◡  SSet  𝑦  ↔  𝑦  SSet  𝑧 ) | 
						
							| 9 | 7 | brsset | ⊢ ( 𝑦  SSet  𝑧  ↔  𝑦  ⊆  𝑧 ) | 
						
							| 10 | 8 9 | bitri | ⊢ ( 𝑧 ◡  SSet  𝑦  ↔  𝑦  ⊆  𝑧 ) | 
						
							| 11 | 10 | rexbii | ⊢ ( ∃ 𝑧  ∈  𝑥 𝑧 ◡  SSet  𝑦  ↔  ∃ 𝑧  ∈  𝑥 𝑦  ⊆  𝑧 ) | 
						
							| 12 | 6 11 | bitri | ⊢ ( 𝑦  ∈  ( ◡  SSet   “  𝑥 )  ↔  ∃ 𝑧  ∈  𝑥 𝑦  ⊆  𝑧 ) | 
						
							| 13 | 4 12 | sylibr | ⊢ ( 𝑦  ∈  𝑥  →  𝑦  ∈  ( ◡  SSet   “  𝑥 ) ) | 
						
							| 14 | 13 | ssriv | ⊢ 𝑥  ⊆  ( ◡  SSet   “  𝑥 ) | 
						
							| 15 |  | sseq2 | ⊢ ( 𝑦  =  ( ◡  SSet   “  𝑥 )  →  ( 𝑥  ⊆  𝑦  ↔  𝑥  ⊆  ( ◡  SSet   “  𝑥 ) ) ) | 
						
							| 16 | 14 15 | mpbiri | ⊢ ( 𝑦  =  ( ◡  SSet   “  𝑥 )  →  𝑥  ⊆  𝑦 ) | 
						
							| 17 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 18 | 17 5 | brimage | ⊢ ( 𝑥 Image ◡  SSet  𝑦  ↔  𝑦  =  ( ◡  SSet   “  𝑥 ) ) | 
						
							| 19 |  | df-br | ⊢ ( 𝑥 Image ◡  SSet  𝑦  ↔  〈 𝑥 ,  𝑦 〉  ∈  Image ◡  SSet  ) | 
						
							| 20 | 18 19 | bitr3i | ⊢ ( 𝑦  =  ( ◡  SSet   “  𝑥 )  ↔  〈 𝑥 ,  𝑦 〉  ∈  Image ◡  SSet  ) | 
						
							| 21 | 5 | brsset | ⊢ ( 𝑥  SSet  𝑦  ↔  𝑥  ⊆  𝑦 ) | 
						
							| 22 |  | df-br | ⊢ ( 𝑥  SSet  𝑦  ↔  〈 𝑥 ,  𝑦 〉  ∈   SSet  ) | 
						
							| 23 | 21 22 | bitr3i | ⊢ ( 𝑥  ⊆  𝑦  ↔  〈 𝑥 ,  𝑦 〉  ∈   SSet  ) | 
						
							| 24 | 16 20 23 | 3imtr3i | ⊢ ( 〈 𝑥 ,  𝑦 〉  ∈  Image ◡  SSet   →  〈 𝑥 ,  𝑦 〉  ∈   SSet  ) | 
						
							| 25 | 24 | gen2 | ⊢ ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 ,  𝑦 〉  ∈  Image ◡  SSet   →  〈 𝑥 ,  𝑦 〉  ∈   SSet  ) | 
						
							| 26 |  | funimage | ⊢ Fun  Image ◡  SSet | 
						
							| 27 |  | funrel | ⊢ ( Fun  Image ◡  SSet   →  Rel  Image ◡  SSet  ) | 
						
							| 28 |  | ssrel | ⊢ ( Rel  Image ◡  SSet   →  ( Image ◡  SSet   ⊆   SSet   ↔  ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 ,  𝑦 〉  ∈  Image ◡  SSet   →  〈 𝑥 ,  𝑦 〉  ∈   SSet  ) ) ) | 
						
							| 29 | 26 27 28 | mp2b | ⊢ ( Image ◡  SSet   ⊆   SSet   ↔  ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 ,  𝑦 〉  ∈  Image ◡  SSet   →  〈 𝑥 ,  𝑦 〉  ∈   SSet  ) ) | 
						
							| 30 | 25 29 | mpbir | ⊢ Image ◡  SSet   ⊆   SSet |