Metamath Proof Explorer


Theorem imagesset

Description: The Image functor applied to the converse of the subset relationship yields a subset of the subset relationship. (Contributed by Scott Fenton, 14-Apr-2018)

Ref Expression
Assertion imagesset Image SSet SSet

Proof

Step Hyp Ref Expression
1 ssid 𝑦𝑦
2 sseq2 ( 𝑧 = 𝑦 → ( 𝑦𝑧𝑦𝑦 ) )
3 2 rspcev ( ( 𝑦𝑥𝑦𝑦 ) → ∃ 𝑧𝑥 𝑦𝑧 )
4 1 3 mpan2 ( 𝑦𝑥 → ∃ 𝑧𝑥 𝑦𝑧 )
5 vex 𝑦 ∈ V
6 5 elima ( 𝑦 ∈ ( SSet 𝑥 ) ↔ ∃ 𝑧𝑥 𝑧 SSet 𝑦 )
7 vex 𝑧 ∈ V
8 7 5 brcnv ( 𝑧 SSet 𝑦𝑦 SSet 𝑧 )
9 7 brsset ( 𝑦 SSet 𝑧𝑦𝑧 )
10 8 9 bitri ( 𝑧 SSet 𝑦𝑦𝑧 )
11 10 rexbii ( ∃ 𝑧𝑥 𝑧 SSet 𝑦 ↔ ∃ 𝑧𝑥 𝑦𝑧 )
12 6 11 bitri ( 𝑦 ∈ ( SSet 𝑥 ) ↔ ∃ 𝑧𝑥 𝑦𝑧 )
13 4 12 sylibr ( 𝑦𝑥𝑦 ∈ ( SSet 𝑥 ) )
14 13 ssriv 𝑥 ⊆ ( SSet 𝑥 )
15 sseq2 ( 𝑦 = ( SSet 𝑥 ) → ( 𝑥𝑦𝑥 ⊆ ( SSet 𝑥 ) ) )
16 14 15 mpbiri ( 𝑦 = ( SSet 𝑥 ) → 𝑥𝑦 )
17 vex 𝑥 ∈ V
18 17 5 brimage ( 𝑥 Image SSet 𝑦𝑦 = ( SSet 𝑥 ) )
19 df-br ( 𝑥 Image SSet 𝑦 ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ Image SSet )
20 18 19 bitr3i ( 𝑦 = ( SSet 𝑥 ) ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ Image SSet )
21 5 brsset ( 𝑥 SSet 𝑦𝑥𝑦 )
22 df-br ( 𝑥 SSet 𝑦 ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ SSet )
23 21 22 bitr3i ( 𝑥𝑦 ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ SSet )
24 16 20 23 3imtr3i ( ⟨ 𝑥 , 𝑦 ⟩ ∈ Image SSet → ⟨ 𝑥 , 𝑦 ⟩ ∈ SSet )
25 24 gen2 𝑥𝑦 ( ⟨ 𝑥 , 𝑦 ⟩ ∈ Image SSet → ⟨ 𝑥 , 𝑦 ⟩ ∈ SSet )
26 funimage Fun Image SSet
27 funrel ( Fun Image SSet → Rel Image SSet )
28 ssrel ( Rel Image SSet → ( Image SSet SSet ↔ ∀ 𝑥𝑦 ( ⟨ 𝑥 , 𝑦 ⟩ ∈ Image SSet → ⟨ 𝑥 , 𝑦 ⟩ ∈ SSet ) ) )
29 26 27 28 mp2b ( Image SSet SSet ↔ ∀ 𝑥𝑦 ( ⟨ 𝑥 , 𝑦 ⟩ ∈ Image SSet → ⟨ 𝑥 , 𝑦 ⟩ ∈ SSet ) )
30 25 29 mpbir Image SSet SSet